When you submit jobs, they are using physical resources such as CPUs, Memory, Network, GPUs, Energy etc. We keep track of the usage of some of those resource. On this page we'll let you know how to consult your usage of the resource. We have several tools that you can use to consult your utilization: sacct, sreport, openxdmod
We use sreport as our primary accounting reference. However, you may find other tools useful for specific purposes. Here's a comparison:
We apply uniform resource accounting by converting GPU hours and memory usage into CPU-hour equivalents, using the TRESBillingWeights feature provided by SLURM. A CPU hour represents one hour of processing time on a single CPU core.
We use this model because our cluster is heterogeneous, and both the computational power and the cost of GPUs vary significantly depending on the model. To ensure fairness and transparency, each GPU type is assigned a weight that reflects its relative performance compared to a CPU core. Similarly, memory usage is converted into CPU-hour equivalents based on predefined weights.
We also bill memory usage because some jobs consume very little CPU but require large amounts of memory, which means an entire compute node is occupied. This ensures that jobs using significant memory resources are accounted for fairly.
Example: A job using a GPU with a weight of 10 for 2 hours and memory equivalent to 5 CPU hours would be billed as 25 CPU hours. This approach guarantees consistent, transparent, and fair resource accounting across all heterogeneous components of the cluster.
You can check the up to date conversion details by inspecting the parameters of any partition on the clusters. The same conversion table is applied everywhere.
(bamboo)-[root@slurm1 ~]$ scontrol show partition debug-cpu | grep TRESBillingWeights | tr "," "\n" TRESBillingWeights=CPU=1.0 Mem=0.25G GRES/gpu=1 GRES/gpu:nvidia_a100-pcie-40gb=5 GRES/gpu:nvidia_a100_80gb_pcie=8 GRES/gpu:nvidia_geforce_rtx_2080_ti=2 GRES/gpu:nvidia_geforce_rtx_3080=3 GRES/gpu:nvidia_geforce_rtx_3090=5 GRES/gpu:nvidia_geforce_rtx_4090=8 GRES/gpu:nvidia_rtx_a5000=5 GRES/gpu:nvidia_rtx_a5500=5 GRES/gpu:nvidia_rtx_a6000=8 GRES/gpu:nvidia_titan_x=1 GRES/gpu:tesla_p100-pcie-12gb=1
Here you can see for example that using a gpu nvidia_a100-pcie-40gb for 1 hour is equivalent in term of cost to use 5 CPUhour.
Research groups that have invested in the HPC cluster by purchasing private CPU or GPU nodes benefit from high-priority access to these resources.
Although these nodes remain available to all users, owners receive priority scheduling and a predefined annual allocation of compute hours, referred to as billings. The advantage of this approach is flexibility: you are free to use any resource on any cluster, rather than being restricted to your own nodes. When doing so, your billings will be consumed.
To view details of owned resources, users can run the script:
ug_getNodeCharacteristicsSummary.py
This script provides a summary of the node characteristics within the cluster.
Note: This model ensures fairness across all users. Even if some groups own nodes, resources remain shared. Usage beyond the included billings will be charged according to the standard accounting model, ensuring equitable access for everyone.
Output example of the script:
ug_getNodeCharacteristicsSummary.py --partitions private-<group>-gpu private-<group>-cpu --cluster <cluster> --summary host sn cpu mem gpunumber gpudeleted gpumodel gpumemory purchasedate months remaining in prod. (Jan 2025) billing ------ ----------- ----- ----- ----------- ------------ -------------------------- ----------- -------------- -------------------------------------- --------- cpu084 N-20.02.151 36 187 0 0 0 2020-02-01 1 79 [...] cpu088 N-20.02.155 36 187 0 0 0 2020-02-01 1 79 [...] cpu226 N-19.01.161 20 94 0 0 0 2019-01-01 0 41 [...] cpu229 N-19.01.164 20 94 0 0 0 2019-01-01 0 41 cpu277 N-20.11.131 128 503 0 0 0 2020-11-01 10 251 gpu002 S-16.12.215 12 251 5 0 NVIDIA TITAN X (Pascal) 12288 2016-12-01 0 84 gpu012 S-16.12.216 24 251 8 0 NVIDIA GeForce RTX 2080 Ti 11264 2016-12-01 0 108 gpu017 S-20.11.146 128 503 8 0 NVIDIA GeForce RTX 3090 24576 2020-11-01 10 299 gpu023 S-21.09.121 128 503 8 0 NVIDIA GeForce RTX 3080 10240 2021-09-01 20 283 gpu024 S-21.09.122 128 503 8 0 NVIDIA GeForce RTX 3080 10240 2021-09-01 20 283 gpu044 S-23.01.148 128 503 8 0 NVIDIA RTX A5000 24564 2023-01-01 36 299 gpu047 S-23.12.113 128 503 8 0 NVIDIA RTX A5000 24564 2023-12-01 47 299 gpu049 S-24.10.140 128 384 8 0 NVIDIA GeForce RTX 4090 24564 2024-10-01 57 291 ============================================================ Summary ============================================================ Total CPUs: 1364 Total CPUs memory[GB]: 6059 Total GPUs: 61 Total GPUs memory[MB]: 142300 Billing: 1959 CPUhours per year: 10.30M
How to read the output:
You can modify the reference year if you want to “simulate” the hardware you'll have in your private partition in a given year. To do so, use the argument --reference-year of the script.
We track the job usage of our clusters here: https://openxdmod.hpc.unige.ch/
We have a tutorial explaining some of the features: here
Openxdmod is integrated into our SI. When you connect to it, you'll get the profile “user” and the data are filtered by your user by default. If you are a PI, you can ask us to change your profile to be PI.
You can see your job history using sacct:
[sagon@master ~] $ sacct -u $USER -S 2021-04-01
JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
45517641 jobname debug-cpu rossigno 1 FAILED 2:0
45517641.ba+ batch rossigno 1 FAILED 2:0
45517641.ex+ extern rossigno 1 COMPLETED 0:0
45517641.0 R rossigno 1 FAILED 2:0
45518119 jobname debug-cpu rossigno 1 COMPLETED 0:0
45518119.ba+ batch rossigno 1 COMPLETED 0:0
45518119.ex+ extern rossigno 1 COMPLETED 0:0
To get reporting about your past jobs, you can use sreport (https://slurm.schedmd.com/sreport.html).
We wrote a helper that you can use to get your past resource usage on the cluster. This script can display the resource utilization
(baobab)-[sagon@login1] $ ug_slurm_usage_per_user.py --help
usage: ug_slurm_usage_per_user.py [-h] [--user USER] [--start START] [--end END] [--pi PI] [--group GROUP] [--cluster {baobab,yggdrasil,bamboo}] [--all-users] [--aggregate] [--report-type {user,account}]
[--time-format {Hours,Minutes,Seconds}] [--verbose]
Retrieve HPC utilization statistics for a user or group of users.
options:
-h, --help show this help message and exit
--user USER Username to retrieve usage for.
--start START Start date (default: first of month).
--end END End date (default: now).
--pi PI Specify a PI manually.
--group GROUP Specify a group name to get all PIs belonging to it.
--cluster {baobab,yggdrasil,bamboo}
Cluster name (default: all clusters).
--all-users Include all users under the PI account.
--aggregate Aggregate the usage per user.
--report-type {user,account}
Type of report: user (default) or account.
--time-format {Hours,Minutes,Seconds}
Time format: Hours (default), Minutes, or Seconds.
--verbose Verbose output.
By default when you run this script, it will print your past usage of the current month, for all the accounts you are member of.
(baobab)-[sagon@login1] $ ug_slurm_usage_per_user.py --pi **** --report-type account --start 2025-01-01 -------------------------------------------------------------------------------- Cluster/Account/User Utilization 2025-01-01T00:00:00 - 2025-12-08T13:59:59 (29512800 secs) Usage reported in TRES Hours -------------------------------------------------------------------------------- Cluster Login Proper Name Account TRES Name Used --------- ------- ------------- --------- ----------- ------ bamboo krusek billing 176681 baobab krusek billing 961209 yggdrasil krusek billing 0 Total usage: 1.14M
Usage example to see the resource usage from the beginning of 2025 for all the PIs and associate users of the group private_xxx. The group private_xxx owns several compute nodes:
(baobab)-[sagon@login1 ~]$ ug_slurm_usage_per_user.py --group private_xxx --start=2025-01-01 --report-type=account -------------------------------------------------------------------------------- Cluster/Account/User Utilization 2025-01-01T00:00:00 - 2025-08-21T14:59:59 (20095200 secs) Usage reported in TRES Hours -------------------------------------------------------------------------------- Cluster Login Proper Name Account TRES Name Used --------- ------- ------------- --------- ----------- ------- baobab PI1 billing 56134 yggdrasil PI1 billing 105817 bamboo PI2 billing 5416 baobab PI2 billing 1517001 yggdrasil PI2 billing 23775 bamboo PI3 billing 0 baobab PI3 billing 1687963 yggdrasil PI3 billing 1344599 [...] Total usage: 7.36M
$ ug_slurm_usage_per_user.py --pi ***** --report-type account --start 2025-01-01 --all-users --aggregate -------------------------------------------------------------------------------- Cluster/Account/User Utilization 2025-01-01T00:00:00 - 2025-12-08T13:59:59 (29512800 secs) Usage reported in TRES Hours -------------------------------------------------------------------------------- Login Used -------- ------ a***u 547746 d***i 272634 d***on 91178 d***l 86860 e***j 60649 v***d0 37962 w***r 29886 s***o 9120 k***k 1853 m***l 1 Total usage: 1.14M
Here are some examples that can give you a starting point :
To get the number of jobs you ran (you ⇔ $USER) in 2018 (dates in yyyy-mm-dd format) :
[brero@login2 ~]$ sreport job sizesbyaccount user=$USER PrintJobCount start=2018-01-01 end=2019-01-01 -------------------------------------------------------------------------------- Job Sizes 2018-01-01T00:00:00 - 2018-12-31T23:59:59 (31536000 secs) Units are in number of jobs ran -------------------------------------------------------------------------------- Cluster Account 0-49 CPUs 50-249 CPUs 250-499 CPUs 500-999 CPUs >= 1000 CPUs % of cluster --------- --------- ------------- ------------- ------------- ------------- ------------- ------------ baobab root 180 40 4 15 0 100.00%
You can see how many jobs were run (grouped by allocated CPU). You can also see we specified an extra day for the end date end=2019-01-01 in order to cover the whole year :
Job Sizes 2018-01-01T00:00:00 - 2018-12-31T23:59:59''
You can also check how much CPU time (seconds) you have used on the cluster between since 2019-09-01 :
[brero@login2 ~]$ sreport cluster AccountUtilizationByUser user=$USER start=2019-09-01 -t Seconds -------------------------------------------------------------------------------- Cluster/Account/User Utilization 2019-09-01T00:00:00 - 2019-09-09T23:59:59 (64800 secs) Usage reported in CPU Seconds -------------------------------------------------------------------------------- Cluster Account Login Proper Name Used Energy --------- --------------- --------- --------------- -------- -------- baobab rossigno brero BRERO Massimo 1159 0
In this example, we added the time -t Seconds parameter to have the output in seconds. Minutes or Hours are also possible.
Please note :
Tip : If you absolutely need a report including your job that ran on the same day, you can override the default end date by forcing tomorrow's date :
sreport cluster AccountUtilizationByUser user=$USER start=2019-09-01 end=$(date --date="tomorrow" +%Y-%m-%d) -t seconds