2026/01/30 20:16 1/9 Utilization and accounting

Table of Contents

Utilization and accounting
Comparison of sreport, sacct, and sshare
Resource accounting uniformization
Conversion Rules extract (see below for details)
Example Calculation
Resources available for research group
Job accounting
OpenXDMoD
sacct
Report and statistics with sreport
Usage details of a given PI
Usage details of all Pls associated with a private group
Aggregate usage by all users of a given PI
sreport examples

Utilization and accounting

When you submit jobs, they are using physical resources such as CPUs, Memory, Network, GPUs,
Energy etc. We keep track of the usage of some of those resource. On this page we'll let you know
how to consult your usage of the resource. We have several tools that you can use to consult your
utilization: sacct, sreport, openxdmod

Comparison of sreport, sacct, and sshare

We use sreport as our primary accounting reference. However, you may find other tools useful for
specific purposes. Here's a comparison:

e sacct: Displays only account jobs, excluding time allocated via reservations. If duplicate jobs
exist, only one is shown.

e sreport: By default, jobs with wall times overlapping the report's time range are truncated. For
reservation-based jobs, the requested idle time is distributed among all users with access to the
reservation.

» sshare: Not recommended for accounting purposes; displayed values are adjusted based on
fairshare calculations.

Resource accounting uniformization

We apply uniform resource accounting by converting GPU hours and memory usage into CPU-hour
equivalents, using the TRESBIllingWeights feature provided by SLURM. A CPU hour represents one
hour of processing time on a single CPU core.

We use this model because our cluster is heterogeneous, and both the computational power and the
cost of GPUs vary significantly depending on the model. To ensure fairness and transparency, each
GPU type is assigned a weight that reflects its relative performance compared to a CPU core.
Similarly, memory usage is converted into CPU-hour equivalents based on predefined weights.

eResearch Doc - https://doc.eresearch.unige.ch/

https://slurm.schedmd.com/tres.html

Last update: 2025/12/10 07:41 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting

We also account for memory usage because some jobs consume very little CPU but require large
amounts of memory, which means an entire compute node is occupied. This ensures that jobs using
significant memory resources are accounted for fairly.

Conversion Rules extract (see below for details)

e 1 CPU core = 1 CPUh per hour
¢ 1 GB RAM = 0.25 CPUh per hour
* 1 GPU A100 (40 GB) = 5 CPUh per hour

Example Calculation

Suppose you request:

e 2 CPUs
e 20 GB RAM
* 1 GPU A100

The cost per hour is calculated as:

e CPU: 2 x 1 CPUh = 2 CPUh
e RAM: 20 GB x 0.25 CPUh = 5 CPUh
e GPU: 1 x 5 CPUh =5 CPUh

Total per hour =2 + 5 + 5 =12 CPUh

This approach guarantees consistent, transparent, and fair resource accounting across all
heterogeneous components of the cluster.

You can check the up to date conversion details by inspecting the parameters of any partition on the
clusters. The same conversion table is applied on all our clusters and partitions.

(bamboo) - [root@slurml ~]$ scontrol show partition debug-cpu | grep
TRESBillingWeights | tr "," "\n"
TRESBillingWeights=CPU=1.0
Mem=0.25G
GRES/gpu=1
GRES/gpu:nvidia al@0-pcie-40gb=5
GRES/gpu:nvidia alG0 80gb pcie=8
GRES/gpu:nvidia geforce rtx 2080 ti=2
GRES/gpu:nvidia geforce rtx 3080=3
GRES/gpu:nvidia geforce rtx 3090=5
GRES/gpu:nvidia geforce rtx 4090=8
GRES/gpu:nvidia rtx a5000=5
GRES/gpu:nvidia rtx a5500=5
GRES/gpu:nvidia rtx a6000=8
GRES/gpu:nvidia titan x=1
GRES/gpu:tesla plO0-pcie-12gb=1

Here you can see for example that using a gpu nvidia_al00-pcie-40gb for 1 hour is equivalent in term

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 20:16

2026/01/30 20:16 3/9 Utilization and accounting

of cost to use 5 CPUhour.

Resources available for research group

Research groups that have invested in the HPC cluster by purchasing private CPU or GPU nodes
benefit from high-priority access to these resources.

Although these nodes remain available to all users, owners receive priority scheduling and a
predefined annual allocation of compute hours, referred to as billings. The advantage of this approach
is flexibility: you are free to use any resource on any cluster, rather than being restricted to your own
nodes. When doing so, your billings will be consumed.

To view details of owned resources, users can run the script:
ug getNodeCharacteristicsSummary.py This script provides a summary of the node
characteristics within the cluster.

Note: This model ensures fairness across all users. Even if some groups own nodes, resources
remain shared. Usage beyond the included billings will be charged according to the standard
accounting model, ensuring equitable access for everyone.

Output example of the script:

ug _getNodeCharacteristicsSummary.py --partitions private-<group>-gpu
private-<group>-cpu --cluster <cluster> --summary

host sn cpu mem gpunumber gpudeleted gpumodel
gpumemory purchasedate months remaining in prod. (Jan 2025) billing
cpu084 N-20.02.151 36 187 0 0

0 2020-02-01 1 79

[...1]

cpu088 N-20.02.155 36 187 0 0

0 2020-02-01 1 79

[...1]

cpu226 N-19.01.161 20 94 0 0

0 2019-01-01 0 41

[...]

cpu229 N-19.01.164 20 94 0 0

0 2019-01-01 0 41

cpu277 N-20.11.131 128 503 0 0

0 2020-11-01 10 251

gpu002 S-16.12.215 12 251 5 0 NVIDIA TITAN X
(Pascal) 12288 2016-12-01

0 84

gpu0l2 S-16.12.216 24 251 8 0 NVIDIA GeForce
RTX 2080 Ti 11264 2016-12-01

0 108

gpu0l7 S-20.11.146 128 503 8 0 NVIDIA GeForce
RTX 3090 24576 2020-11-01

eResearch Doc - https://doc.eresearch.unige.ch/

Last update: 2025/12/10 07:41 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting

10 299

gpu023 S-21.09.121 128 503 8 0 NVIDIA GeForce
RTX 3080 10240 2021-09-01

20 283

gpu024 S-21.09.122 128 503 8 0 NVIDIA GeForce
RTX 3080 10240 2021-09-01

20 283

gpuO44 S-23.01.148 128 503 8 0 NVIDIA RTX
A5000 24564 2023-01-01

36 299

gpu047 S-23.12.113 128 503 8 © NVIDIA RTX
A5000 24564 2023-12-01

47 299

gpu649 S-24.10.140 128 384 8 0 NVIDIA GeForce
RTX 4090 24564 2024-10-01

57 291

Summary

Total CPUs: 1364 Total CPUs memory[GB]: 6059 Total GPUs: 61 Total GPUs
memory[MB]: 142300 Billing: 1959 CPUhours per year: 10.30M

How to read the output:

¢ host: the hostname of the compute node

e sn: the serial number of the node

e cpu: the number of CPUs available in the node

¢ mem: the quantity of memory on the node in GB

e gpunumber: the number of GPU cards on the node

e gpudeleted: the number of GPU cards out of order

e gpumodel: the GPU model

e gpumemory: the GPU memory in MB per GPU card

e purchasedate: the purchase date of the node

e months remaining in prod. (Jan 2025): the number of months the node remains the
property of the research group, the reference date is indicated in parenthesis. In this example it
is January 2025.

e billing: the billing value of the compute node

You can modify the reference year if you want to “simulate” the hardware you'll have in your private
partition in a given year. To do so, use the argument - -reference-year of the script.

Job accounting

OpenXDMoD

We track the job usage of our clusters here: https://openxdmod.hpc.unige.ch/

We have a tutorial explaining some of the features: here

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 20:16

https://openxdmod.hpc.unige.ch/
https://hpc-community.unige.ch/t/tutorial-see-your-past-computation-usage-using-openxdmod/3130

2026/01/30 20:16 5/9 Utilization and accounting

Openxdmod is integrated into our SI. When you connect to it, you'll get the profile “user” and the data
are filtered by your user by default. If you are a PI, you can ask us to change your profile to be PI.

(yet?). For this reason, you need to use sreport or our script if you want to view the

@ OpenXDMoD currently supports only CPUh and GPUh metrics, not the billing metrics
billed metrics.

sacct

You can see your job history using sacct:

[sagon@master ~] $ sacct -u $USER -S 2021-04-01

JobID JobName Partition Account AllocCPUS State ExitCode
45517641 jobname debug-cpu rossigno 1 FAILED 2:0
45517641.ba+ batch rossigno 1 FAILED 2:0
45517641 .ex+ extern rossigno 1 COMPLETED 0:0
45517641. R rossigno 1 FAILED 2:0
45518119 jobname debug-cpu rossigno 1 COMPLETED 0:0
45518119.ba+ batch rossigno 1 COMPLETED 0:0
45518119.ex+ extern rossigno 1 COMPLETED 0:0

Report and statistics with sreport

To get reporting about your past jobs, you can use sreport
(https://slurm.schedmd.com/sreport.html).

We wrote a helper that you can use to get your past resource usage on the cluster. This script can
display the resource utilization

e for each user of a given account (PI)
e total usage of a given account (PI)

(baobab) - [sagon@loginl] $ ug slurm usage per user.py --help
usage: ug slurm usage per user.py [-h] [--user USER] [--start START] [--end
END] [--pi PI] [--group GROUP] [--cluster {baobab,yggdrasil,bamboo}] [--all-
users] [--aggregate] [--report-type {user,account}]

[--time-format {Hours,Minutes,Seconds}] [-
-verbose]

Retrieve HPC utilization statistics for a user or group of users.

options:
-h, --help show this help message and exit
--user USER Username to retrieve usage for.
--start START Start date (default: first of month).
--end END End date (default: now).

eResearch Doc - https://doc.eresearch.unige.ch/

https://slurm.schedmd.com/sreport.html

Last update: 2025/12/10 07:41 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting

--pi PI Specify a PI manually.
--group GROUP Specify a group name to get all PIs belonging to it.
--cluster {baobab,yggdrasil, bamboo}

Cluster name (default: all clusters).
--all-users Include all users under the PI account.
--aggregate Aggregate the usage per user.
--report-type {user,account}

Type of report: user (default) or account.
--time-format {Hours,Minutes,Seconds}

Time format: Hours (default), Minutes, or Seconds.
--verbose Verbose output.

By default when you run this script, it will print your past usage of the current month, for all the
accounts you are member of.

Usage details of a given PI

(baobab) - [sagon@loginl] $ ug slurm usage per user.py --pi **** -.report-type
account --start 2025-01-01

Cluster/Account/User Utilization 2025-01-01T00:00:00 - 2025-12-08T13:59:59
(29512800 secs)

Usage reported in TRES Hours

Cluster Login Proper Name Account TRES Name Used
bamboo krusek billing 176681
baobab krusek billing 961209
yggdrasil krusek billing 0

Total usage: 1.14M

Usage details of all Pls associated with a private group

Usage example to see the resource usage from the beginning of 2025 for all the Pls and associate
users of the group private_xxx. The group private_xxx owns several compute nodes:

(baobab) - [sagon@loginl ~]$ ug slurm usage per user.py --group private xxx --
start=2025-01-01 --report-type=account

Cluster/Account/User Utilization 2025-01-01T00:00:00 - 2025-08-21T14:59:59

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 20:16

2026/01/30 20:16

7/9

Utilization and accounting

(20095200

secs)

Usage reported in TRES Hours

baobab
yggdrasil
bamboo
baobab
yggdrasil
bamboo
baobab
yggdrasil
[...]

Total usage: 7.36M

Login

Proper Name

Aggregate usage by all users of a given PI

billing
billing
billing
billing
billing
billing
billing
billing

56134
105817
5416
1517001
23775

0
1687963
1344599

$ ug slurm usage per user.py --pi ***** __report-type account --start

2025-01-01 --all-users --aggregate

Cluster/Account/User Utilization 2025-01-01T00:00:00 - 2025-12-08T13:59:59

(29512800

secs)

Usage reported in TRES Hours

Total usage: 1.14M

547746
272634
91178
86860
60649
37962
29886
9120
1853

1

eResearch Doc - https://doc.eresearch.unige.ch/

Last update: 2025/12/10 07:41 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting

sreport examples

by default, the TRES (tracking resource) shown by sreport is CPUh. If you want to see
what will be accounted and billed, you need to use the TRES “billing”.

Here are some examples that can give you a starting point :

To get the number of jobs you ran (you & $USER) in 2018 (dates in yyyy-mm-dd format) :

[brero@login2 ~]$ sreport job sizesbyaccount user=$USER PrintJobCount
start=2018-01-01 end=2019-01-01

Job Sizes 2018-01-01T00:00:00 - 2018-12-31T23:59:59 (31536000 secs)
Units are in number of jobs ran

Cluster Account 0-49 CPUs 50-249 CPUs 250-499 CPUs 500-999 CPUs

>= 1000 CPUs % of cluster

baobab root 180 40 4
0 100.00%

You can see how many jobs were run (grouped by allocated CPU). You can also see we specified an
extra day for the end date end=2019-01-01 in order to cover the whole year :

Job Sizes 2018-01-01T00:00:00 - 2018-12-31T23:59:59""

You can also check how much CPU time (seconds) you have used on the cluster between since
2019-09-01 :

[brero@login2 ~]$ sreport cluster AccountUtilizationByUser user=$USER
start=2019-09-01 -t Seconds

Cluster/Account/User Utilization 2019-09-01T00:00:00 - 2019-09-09T23:59:59

(64800 secs)
Usage reported in CPU Seconds

Cluster Account Login Proper Name Used Energy

baobab rossigno brero BRERO Massimo 1159 0

In this example, we added the time -t Seconds parameter to have the output in seconds. Minutes

or Hours are also possible.

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 20:16

2026/01/30 20:16 9/9 Utilization and accounting

Please note :

e By default, the CPU time is in Minutes

e |t takes up to an hour for Slurm to upate this information in its database, so be patient

e If you don't specify a start, nor an end date, yesterday's date will be used.

e The CPU time is the time that was allocated to you. It doesn't matter if the CPU was actually
used or not. So let's say you ask for 15min allocation, then do nothing for 3 minutes then run 1
CPU at 100% for 4 minutes and exit the allocation, then 7 minutes will be added to your CPU
time.

Tip : If you absolutely need a report including your job that ran on the same day, you can override the
default end date by forcing tomorrow's date :

sreport cluster AccountUtilizationByUser user=$USER start=2019-09-01
end=$(date --date="tomorrow" +%Y-%m-%d) -t seconds

From:
https://doc.eresearch.unige.ch/ - eResearch Doc

Permanent link:
https://doc.eresearch.unige.ch/hpc/accounting

Last update: 2025/12/10 07:41

eResearch Doc - https://doc.eresearch.unige.ch/

https://doc.eresearch.unige.ch/
https://doc.eresearch.unige.ch/hpc/accounting

	Utilization and accounting
	Comparison of sreport, sacct, and sshare
	Resource accounting uniformization
	Conversion Rules extract (see below for details)
	Example Calculation

	Resources available for research group
	Job accounting
	OpenXDMoD
	sacct
	Report and statistics with sreport
	Usage details of a given PI
	Usage details of all PIs associated with a private group
	Aggregate usage by all users of a given PI
	sreport examples

