2026/01/30 23:23 1/8 Utilization and accounting

Table of Contents

Utilization and accounting
Comparison of sreport, sacct, and sshare
Resource accounting uniformization
Conversion Rules extract (see below for details)
Example Calculation
Resources available for research group
Job accounting
OpenXDMoD
sacct
Report and statistics with sreport
Usage details of a given PI
Usage details of all Pls associated with a private group
Aggregate usage by all users of a given PI
sreport examples

Utilization and accounting

When you submit jobs, they are using physical resources such as CPUs, Memory, Network, GPUs,
Energy etc. We keep track of the usage of some of those resource. On this page we'll let you know
how to consult your usage of the resource. We have several tools that you can use to consult your
utilization: sacct, sreport, openxdmod

Comparison of sreport, sacct, and sshare

We use sreport as our primary accounting reference. However, you may find other tools useful for
specific purposes. Here's a comparison:

e sacct: Displays only account jobs, excluding time allocated via reservations. If duplicate jobs
exist, only one is shown.

e sreport: By default, jobs with wall times overlapping the report's time range are truncated. For
reservation-based jobs, the requested idle time is distributed among all users with access to the
reservation.

» sshare: Not recommended for accounting purposes; displayed values are adjusted based on
fairshare calculations.

Resource accounting uniformization

We charge usage uniformly by converting GPU hours and memory usage into CPU hour equivalents,
leveraging the TRESBIllingWeights functionality provided by SLURM.

A CPU hour represents one hour of processing time by a single CPU core.

For GPUs, SLURM assigns a conversion factor to each GPU model through TRESBIllingWeights (see
below the conversion table), reflecting its computational performance relative to a CPU. Similarly,
memory usage is also converted into CPU hour equivalents based on predefined weights, ensuring

eResearch Doc - https://doc.eresearch.unige.ch/

https://slurm.schedmd.com/tres.html

Last update: 2025/12/04 09:33 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting?rev=1764840784

that jobs consuming significant memory resources are accounted for fairly.

For example, a job using a GPU with a weight of 10 for 2 hours and memory equivalent to 5 CPU hours
would be billed as 25 CPU hours. This approach ensures consistent, transparent, and fair resource
accounting across all heterogeneous components of the cluster.

You can see the detail of the conversion by looking at the parameter of a random partition on any of
the clusters. We are using the same conversion table everywhere.

(bamboo) - [root@slurml ~]$ scontrol show partition debug-cpu | grep
TRESBillingWeights | tr "," "\n"
TRESBillingWeights=CPU=1.0
Mem=0.25G
GRES/gpu=1
GRES/gpu:nvidia al@0-pcie-40gb=5
GRES/gpu:nvidia al@0 80gb pcie=8
GRES/gpu:nvidia geforce rtx 2080 ti=2
GRES/gpu:nvidia geforce rtx 3080=3
GRES/gpu:nvidia geforce rtx 3090=5
GRES/gpu:nvidia geforce rtx 4090=8
GRES/gpu:nvidia rtx a5000=5
GRES/gpu:nvidia rtx a5500=5
GRES/gpu:nvidia rtx a6000=8
GRES/gpu:nvidia titan x=1
GRES/gpu:tesla plO0-pcie-12gb=1

Here you can see for example that using a gpu nvidia_al00-pcie-40gb for 1 hour is equivalent in term
of cost to use 5 CPUhour.

Resources available for research group

Research groups that have invested in the HPC cluster by purchasing private CPU or GPU nodes
benefit from high priority access to these resources.

While these nodes remain available to all users, owners receive priority scheduling and a designated
number of included compute hours per year.

To check the details of their owned resources, users can run the script
ug getNodeCharacteristicsSummary.py, which provides a summary of the node characteristics
within the cluster.

Example:

ug getNodeCharacteristicsSummary.py --partitions private-<group>-gpu
private-<group>-cpu --cluster <cluster> --summary

host sn cpu mem gpunumber gpudeleted gpumodel
gpumemory purchasedate months remaining in prod. (Jan 2025) billing

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 23:23

2026/01/30 23:23

3/8

Utilization and accounting

cpu084 N-20.02.
0 2020-02-01
CcpuB@85 N-20.02.
0 2020-02-01
cpu086 N-20.02.
0 2020-02-01
CcCpu@87 N-20.02.
0 2020-02-01
cpu088 N-20.02.
0 2020-02-01
cpub89 N-20.02.
0 2020-02-01
cpuf90 N-20.02.
0 2020-02-01
cpu209 N-17.12.
0 2017-12-01
CcCpu2l®@ N-17.12.
0 2017-12-01
cpu2ll N-17.12.
0 2017-12-01
cpu2l2 N-17.12.
0 2017-12-01
cpu2l3 N-17.12.
0 2017-12-01
cpu226 N-19.01.
0 2019-01-01
cpu227 N-19.01.
0 2019-01-01
cpu228 N-19.01.
0 2019-01-01
cpu229 N-19.01.
0 2019-01-01
cpu277 N-20.11.
0 2020-11-01

gpub2 S-16.12.
(Pascal)

0 84
gpu0l2 S-16.12.
RTX 2080 Ti

0 108
gpu0l7 S-20.11.
RTX 3090

10 299
gpuB23 S-21.09.
RTX 3080

20 283
gpu024 S-21.09.
RTX 3080

20 283

gpub44 S-23.01.
A5000

151

152

153

154

155

156

157

104

105

106

107

108

161

162

163

164

131

215

216

146

121

122

148

36

36

36

36

36

36

36

20

20

20

20

20

20

20

20

20

128

12

24

128

128

128

128

24564 2023-01-01

187

187

187

187

187

187

187

94

94

94

94

94

94

94

94

94

503

251

12288 2016-12-01

251

11264 2016-12-01

503

24576 2020-11-01

503

10240 2021-09-01

503

10240 2021-09-01

503

10

79

79

79

79

79

79

79

41

41

41

41

41

41

41

41

41

251

NVIDIA TITAN X

NVIDIA GeForce

NVIDIA GeForce

NVIDIA GeForce

NVIDIA GeForce

NVIDIA RTX

eResearch Doc - https://doc.eresearch.unige.ch/

Last update: 2025/12/04 09:33 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting?rev=1764840784

36 299

gpu@47 S-23.12.113 128 503 8 0 NVIDIA RTX
A5000 24564 2023-12-01

47 299

gpuB49 S-24.10.140 128 384 8 0 NVIDIA GeForce
RTX 4090 24564 2024-10-01

57 291

Summary

Total CPUs: 1364 Total CPUs memory[GB]: 6059 Total GPUs: 61 Total GPUs
memory[MB]: 142300 Billing: 1959 CPUhours per year: 10.30M

How to read the output:

¢ host: the hostname of the compute node

e sn: the serial number of the node

e cpu: the number of CPUs available in the node

e mem: the quantity of memory on the node in GB

e gpunumber: the number of GPU cards on the node

e gpudeleted: the number of GPU cards out of order

e gpumodel: the GPU model

e gpumemory: the GPU memory in MB per GPU card

e purchasedate: the purchase date of the node

e months remaining in prod. (Jan 2025): the number of months the node remains the
property of the research group, the reference date is indicated in parenthesis. In this example it
is January 2025.

e billing: the billing value of the compute node

You can modify the reference year if you want to “simulate” the hardware you'll have in your private
partition in a given year. To do so, use the argument - -reference-year of the script.

Job accounting

OpenXDMoD

We track the job usage of our clusters here: https://openxdmod.hpc.unige.ch/
We have a tutorial explaining some of the features: here

Openxdmod is integrated into our SI. When you connect to it, you'll get the profile “user” and the data
are filtered by your user by default. If you are a PI, you can ask us to change your profile to be PI.

OpenXDMoD doesn't support the “billing” metrics (yet?) but only CPUh and GPUh. For
this reason, you need to use the sreport or our script.

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 23:23

https://openxdmod.hpc.unige.ch/
https://hpc-community.unige.ch/t/tutorial-see-your-past-computation-usage-using-openxdmod/3130

2026/01/30 23:23 5/8 Utilization and accounting

sacct

You can see your job history using sacct:

[sagon@master ~] $ sacct -u $USER -S 2021-04-01

JobID JobName Partition Account AllocCPUS State ExitCode
45517641 jobname debug-cpu rossigno 1 FAILED 2:0
45517641 .ba+ batch rossigno 1 FAILED 2:0
45517641 .ex+ extern rossigno 1 COMPLETED 0:0
45517641.0 R rossigno 1 FAILED 2:0
45518119 jobname debug-cpu rossigno 1 COMPLETED 0:0
45518119.ba+ batch rossigno 1 COMPLETED 0:0
45518119.ex+ extern rossigno 1 COMPLETED 0:0

Report and statistics with sreport

To get reporting about your past jobs, you can use sreport
(https://slurm.schedmd.com/sreport.html).

We wrote a helper that you can use to get your past resource usage on the cluster. This script can
display the resource utilization

e for each user of a given account (PI)
e total usage of a given account (PI)

(baobab) - [sagon@loginl ~]$ ug slurm usage per _user.py -h
usage: ug slurm usage per user.py [-h] [--user USER] [--start START] [--end
END] [--pi PI] [--group GROUP] [--cluster {baobab,yggdrasil,bamboo}] [--
all users] [--report type {user,account}] [--time format
{Hours,Minutes,Seconds}]

[--verbose]

Retrieve HPC utilization statistics for a user or group of users.

options:
-h, --help show this help message and exit
--user USER Username to retrieve usage for.
--start START Start date (default: first of month).
--end END End date (default: now).
--pi PI Specify a PI manually.
--group GROUP Specify a group name to get all PIs belonging to it.

--cluster {baobab,yggdrasil, bamboo}
Cluster name (default: all clusters).
--all users Include all users under the PI account.
--report type {user,account}
Type of report: user (default) or account.
--time format {Hours,Minutes,Seconds}
Time format: Hours (default), Minutes, or Seconds.

eResearch Doc - https://doc.eresearch.unige.ch/

https://slurm.schedmd.com/sreport.html

Last update: 2025/12/04 09:33 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting?rev=1764840784

--verbose Verbose output.

By default when you run this script, it will print your past usage of the current month, for all the
accounts you are member of.

Usage example to see the resource usage from the beginning of 2025 for all the Pls and associate
users of the group private_xxx. The group private_xxx owns several compute nodes:

(baobab) - [sagon@loginl ~]$ ug slurm usage per user.py --group private Xxxx --
start=2025-01-01 --report type=account

Cluster/Account/User Utilization 2025-01-01T00:00:00 - 2025-08-21T14:59:59
(20095200 secs)

Usage reported in TRES Hours

Cluster Login Proper Name Account TRES Name Used
baobab PI1 billing 56134
yggdrasil PI1 billing 105817
bamboo PI2 billing 5416
baobab PI2 billing 1517001
yggdrasil PI2 billing 23775
bamboo PI3 billing 0
baobab PI3 billing 1687963
yggdrasil PI3 billing 1344599

[...1]
Total usage: 7.36M

sreport examples

Here are some examples that can give you a starting point :

To get the number of jobs you ran (you & $USER) in 2018 (dates in yyyy-mm-dd format) :

[brero@login2 ~]$ sreport job sizesbyaccount user=$USER PrintJobCount
start=2018-01-01 end=2019-01-01

Job Sizes 2018-01-01T00:00:00 - 2018-12-31T23:59:59 (31536000 secs)
Units are in number of jobs ran

Cluster Account 0-49 CPUs 50-249 CPUs 250-499 CPUs 500-999 CPUs

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 23:23

2026/01/30 23:23 7/8 Utilization and accounting

>= 1000 CPUs % of cluster

baobab root 180 40 4
0 100.00%

You can see how many jobs were run (grouped by allocated CPU). You can also see we specified an
extra day for the end date end=2019-01-01 in order to cover the whole year :

Job Sizes 2018-01-01T00:00:00 - 2018-12-31T23:59:59""

You can also check how much CPU time (seconds) you have used on the cluster between since
2019-09-01 :

[brero@login2 ~]$ sreport cluster AccountUtilizationByUser user=$USER
start=2019-09-01 -t Seconds

Cluster/Account/User Utilization 2019-09-01T00:00:00 - 2019-09-09T23:59:59

(64800 secs)
Usage reported in CPU Seconds

Cluster Account Login Proper Name Used Energy

baobab rossigno brero BRERO Massimo 1159 0

In this example, we added the time -t Seconds parameter to have the output in seconds. Minutes
or Hours are also possible.

Please note :

e By default, the CPU time is in Minutes
e |t takes up to an hour for Slurm to upate this information in its database, so be patient

* |f you don't specify a start, nor an end date, yesterday's date will be used.

e The CPU time is the time that was allocated to you. It doesn't matter if the CPU was actually
used or not. So let's say you ask for 15min allocation, then do nothing for 3 minutes then run 1
CPU at 100% for 4 minutes and exit the allocation, then 7 minutes will be added to your CPU

time.

Tip : If you absolutely need a report including your job that ran on the same day, you can override the
default end date by forcing tomorrow's date :

sreport cluster AccountUtilizationByUser user=$USER start=2019-09-01
end=$(date --date="tomorrow" +%Y-%m-%d) -t seconds

eResearch Doc - https://doc.eresearch.unige.ch/

Last update: 2025/12/04 09:33 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting?rev=1764840784

From:
https://doc.eresearch.unige.ch/ - eResearch Doc

Permanent link:
https://doc.eresearch.unige.ch/hpc/accounting?rev=1764840784

Last update: 2025/12/04 09:33

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 23:23

https://doc.eresearch.unige.ch/
https://doc.eresearch.unige.ch/hpc/accounting?rev=1764840784

	Utilization and accounting
	Comparison of sreport, sacct, and sshare
	Resource accounting uniformization
	Resources available for research group
	Job accounting
	OpenXDMoD
	sacct
	Report and statistics with sreport
	sreport examples

