
2026/01/30 23:23 1/7 Utilization and accounting

eResearch Doc - https://doc.eresearch.unige.ch/

Table of Contents

Utilization and accounting
Comparison of sreport, sacct, and sshare
Resource accounting uniformization

Conversion Rules extract (see below for details)
Example Calculation

Resources available for research group
Job accounting

OpenXDMoD
sacct
Report and statistics with sreport

Usage details of a given PI
Usage details of all PIs associated with a private group
Aggregate usage by all users of a given PI
sreport examples

Utilization and accounting

When you submit jobs, they are using physical resources such as CPUs, Memory, Network, GPUs,
Energy etc. We keep track of the usage of some of those resource. On this page we'll let you know
how to consult your usage of the resource. We have several tools that you can use to consult your
utilization: sacct, sreport, openxdmod

Comparison of sreport, sacct, and sshare

We use sreport as our primary accounting reference. However, you may find other tools useful for
specific purposes. Here's a comparison:

sacct: Displays only account jobs, excluding time allocated via reservations. If duplicate jobs
exist, only one is shown.
sreport: By default, jobs with wall times overlapping the report's time range are truncated. For
reservation-based jobs, the requested idle time is distributed among all users with access to the
reservation.
sshare: Not recommended for accounting purposes; displayed values are adjusted based on
fairshare calculations.

Resource accounting uniformization

We apply uniform resource accounting by converting GPU hours and memory usage into CPU-hour
equivalents, using the TRESBillingWeights feature provided by SLURM. A CPU hour represents one
hour of processing time on a single CPU core.

We use this model because our cluster is heterogeneous, and both the computational power and the
cost of GPUs vary significantly depending on the model. To ensure fairness and transparency, each
GPU type is assigned a weight that reflects its relative performance compared to a CPU core.
Similarly, memory usage is converted into CPU-hour equivalents based on predefined weights.

https://slurm.schedmd.com/tres.html


Last update: 2025/12/04 10:34 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting?rev=1764844477

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 23:23

We also bill memory usage because some jobs consume very little CPU but require large amounts of
memory, which means an entire compute node is occupied. This ensures that jobs using significant
memory resources are accounted for fairly.

Example: A job using a GPU with a weight of 10 for 2 hours and memory equivalent to 5 CPU hours
would be billed as 25 CPU hours. This approach guarantees consistent, transparent, and fair resource
accounting across all heterogeneous components of the cluster.

You can check the up to date conversion details by inspecting the parameters of any partition on the
clusters. The same conversion table is applied everywhere.

(bamboo)-[root@slurm1 ~]$ scontrol show partition debug-cpu | grep
TRESBillingWeights | tr "," "\n"
   TRESBillingWeights=CPU=1.0
Mem=0.25G
GRES/gpu=1
GRES/gpu:nvidia_a100-pcie-40gb=5
GRES/gpu:nvidia_a100_80gb_pcie=8
GRES/gpu:nvidia_geforce_rtx_2080_ti=2
GRES/gpu:nvidia_geforce_rtx_3080=3
GRES/gpu:nvidia_geforce_rtx_3090=5
GRES/gpu:nvidia_geforce_rtx_4090=8
GRES/gpu:nvidia_rtx_a5000=5
GRES/gpu:nvidia_rtx_a5500=5
GRES/gpu:nvidia_rtx_a6000=8
GRES/gpu:nvidia_titan_x=1
GRES/gpu:tesla_p100-pcie-12gb=1

Here you can see for example that using a gpu nvidia_a100-pcie-40gb for 1 hour is equivalent in term
of cost to use 5 CPUhour.

Resources available for research group

Research groups that have invested in the HPC cluster by purchasing private CPU or GPU nodes
benefit from high priority access to these resources.

While these nodes remain available to all users, owners receive priority scheduling and a designated
number of included compute hours per year named billings.

To check the details of their owned resources, users can run the script
ug_getNodeCharacteristicsSummary.py, which provides a summary of the node characteristics
within the cluster.

Example:

ug_getNodeCharacteristicsSummary.py --partitions private-<group>-gpu
private-<group>-cpu --cluster <cluster> --summary
host    sn             cpu    mem    gpunumber    gpudeleted  gpumodel
gpumemory  purchasedate      months remaining in prod. (Jan 2025)    billing
------  -----------  -----  -----  -----------  ------------  --------------



2026/01/30 23:23 3/7 Utilization and accounting

eResearch Doc - https://doc.eresearch.unige.ch/

------------  -----------  --------------  ---------------------------------
-----  ---------
cpu084  N-20.02.151     36    187            0             0
0  2020-02-01                                           1         79
[...]
cpu088  N-20.02.155     36    187            0             0
0  2020-02-01                                           1         79
[...]
cpu226  N-19.01.161     20     94            0             0
0  2019-01-01                                           0         41
[...]
cpu229  N-19.01.164     20     94            0             0
0  2019-01-01                                           0         41
cpu277  N-20.11.131    128    503            0             0
0  2020-11-01                                          10        251
gpu002  S-16.12.215     12    251            5             0  NVIDIA TITAN X
(Pascal)           12288  2016-12-01
0         84
gpu012  S-16.12.216     24    251            8             0  NVIDIA GeForce
RTX 2080 Ti        11264  2016-12-01
0        108
gpu017  S-20.11.146    128    503            8             0  NVIDIA GeForce
RTX 3090           24576  2020-11-01
10        299
gpu023  S-21.09.121    128    503            8             0  NVIDIA GeForce
RTX 3080           10240  2021-09-01
20        283
gpu024  S-21.09.122    128    503            8             0  NVIDIA GeForce
RTX 3080           10240  2021-09-01
20        283
gpu044  S-23.01.148    128    503            8             0  NVIDIA RTX
A5000                  24564  2023-01-01
36        299
gpu047  S-23.12.113    128    503            8             0  NVIDIA RTX
A5000                  24564  2023-12-01
47        299
gpu049  S-24.10.140    128    384            8             0  NVIDIA GeForce
RTX 4090           24564  2024-10-01
57        291

============================================================ Summary
============================================================
Total CPUs: 1364 Total CPUs memory[GB]: 6059 Total GPUs: 61 Total GPUs
memory[MB]: 142300 Billing: 1959 CPUhours per year: 10.30M

How to read the output:

host: the hostname of the compute node
sn: the serial number of the node
cpu: the number of CPUs available in the node
mem: the quantity of memory on the node in GB



Last update: 2025/12/04 10:34 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting?rev=1764844477

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 23:23

gpunumber: the number of GPU cards on the node
gpudeleted: the number of GPU cards out of order
gpumodel: the GPU model
gpumemory: the GPU memory in MB per GPU card
purchasedate: the purchase date of the node
months remaining in prod. (Jan 2025): the number of months the node remains the
property of the research group, the reference date is indicated in parenthesis. In this example it
is January 2025.
billing: the billing value of the compute node

You can modify the reference year if you want to “simulate” the hardware you'll have in your private
partition in a given year. To do so, use the argument --reference-year of the script.

Job accounting

OpenXDMoD

We track the job usage of our clusters here: https://openxdmod.hpc.unige.ch/

We have a tutorial explaining some of the features: here

Openxdmod is integrated into our SI. When you connect to it, you'll get the profile “user” and the data
are filtered by your user by default. If you are a PI, you can ask us to change your profile to be PI.

OpenXDMoD currently supports only CPUh and GPUh metrics, not the billing metrics
(yet?). For this reason, you need to use sreport or our script if you want to view the
billed metrics.

sacct

You can see your job history using sacct:

[sagon@master ~] $ sacct -u $USER -S 2021-04-01
       JobID    JobName  Partition    Account  AllocCPUS      State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
45517641        jobname  debug-cpu   rossigno          1     FAILED      2:0
45517641.ba+      batch              rossigno          1     FAILED      2:0
45517641.ex+     extern              rossigno          1  COMPLETED      0:0
45517641.0            R              rossigno          1     FAILED      2:0
45518119        jobname  debug-cpu   rossigno          1  COMPLETED      0:0
45518119.ba+      batch              rossigno          1  COMPLETED      0:0
45518119.ex+     extern              rossigno          1  COMPLETED      0:0

https://openxdmod.hpc.unige.ch/
https://hpc-community.unige.ch/t/tutorial-see-your-past-computation-usage-using-openxdmod/3130


2026/01/30 23:23 5/7 Utilization and accounting

eResearch Doc - https://doc.eresearch.unige.ch/

Report and statistics with sreport

To get reporting about your past jobs, you can use sreport
(https://slurm.schedmd.com/sreport.html).

We wrote a helper that you can use to get your past resource usage on the cluster. This script can
display the resource utilization

for each user of a given account (PI)
total usage of a given account (PI)

(baobab)-[sagon@login1 ~]$ ug_slurm_usage_per_user.py -h
usage: ug_slurm_usage_per_user.py [-h] [--user USER] [--start START] [--end
END] [--pi PI] [--group GROUP] [--cluster {baobab,yggdrasil,bamboo}] [--
all_users] [--report_type {user,account}] [--time_format
{Hours,Minutes,Seconds}]
                                  [--verbose]

Retrieve HPC utilization statistics for a user or group of users.

options:
  -h, --help            show this help message and exit
  --user USER           Username to retrieve usage for.
  --start START         Start date (default: first of month).
  --end END             End date (default: now).
  --pi PI               Specify a PI manually.
  --group GROUP         Specify a group name to get all PIs belonging to it.
  --cluster {baobab,yggdrasil,bamboo}
                        Cluster name (default: all clusters).
  --all_users           Include all users under the PI account.
  --report_type {user,account}
                        Type of report: user (default) or account.
  --time_format {Hours,Minutes,Seconds}
                        Time format: Hours (default), Minutes, or Seconds.
  --verbose             Verbose output.

By default when you run this script, it will print your past usage of the current month, for all the
accounts you are member of.

Usage example to see the resource usage from the beginning of 2025 for all the PIs and associate
users of the group private_xxx. The group private_xxx owns several compute nodes:

(baobab)-[sagon@login1 ~]$ ug_slurm_usage_per_user.py --group private_xxx --
start=2025-01-01 --report_type=account
----------------------------------------------------------------------------
----

Cluster/Account/User Utilization 2025-01-01T00:00:00 - 2025-08-21T14:59:59
(20095200 secs)

Usage reported in TRES Hours

https://slurm.schedmd.com/sreport.html


Last update: 2025/12/04 10:34 hpc:accounting https://doc.eresearch.unige.ch/hpc/accounting?rev=1764844477

https://doc.eresearch.unige.ch/ Printed on 2026/01/30 23:23

----------------------------------------------------------------------------
----

Cluster    Login    Proper Name    Account    TRES Name       Used
---------  -------  -------------  ---------  -----------  -------
baobab                             PI1        billing        56134
yggdrasil                          PI1        billing       105817
bamboo                             PI2        billing         5416
baobab                             PI2        billing      1517001
yggdrasil                          PI2        billing        23775
bamboo                             PI3        billing            0
baobab                             PI3        billing      1687963
yggdrasil                          PI3        billing      1344599
[...]
Total usage: 7.36M

sreport examples

Here are some examples that can give you a starting point :

To get the number of jobs you ran (you ⇔ $USER) in 2018 (dates in yyyy-mm-dd format) :

[brero@login2 ~]$ sreport job sizesbyaccount user=$USER PrintJobCount
start=2018-01-01 end=2019-01-01
 
----------------------------------------------------------------------------
----
Job Sizes 2018-01-01T00:00:00 - 2018-12-31T23:59:59 (31536000 secs)
Units are in number of jobs ran
----------------------------------------------------------------------------
----
  Cluster   Account     0-49 CPUs   50-249 CPUs  250-499 CPUs  500-999 CPUs
>= 1000 CPUs % of cluster
--------- --------- ------------- ------------- ------------- -------------
------------- ------------
   baobab      root           180            40             4            15
0      100.00%

You can see how many jobs were run (grouped by allocated CPU). You can also see we specified an
extra day for the end date end=2019-01-01 in order to cover the whole year :

Job Sizes 2018-01-01T00:00:00 - 2018-12-31T23:59:59''

You can also check how much CPU time (seconds) you have used on the cluster between since
2019-09-01 :

[brero@login2 ~]$ sreport cluster AccountUtilizationByUser user=$USER
start=2019-09-01 -t Seconds
----------------------------------------------------------------------------



2026/01/30 23:23 7/7 Utilization and accounting

eResearch Doc - https://doc.eresearch.unige.ch/

----
Cluster/Account/User Utilization 2019-09-01T00:00:00 - 2019-09-09T23:59:59
(64800 secs)
Usage reported in CPU Seconds
----------------------------------------------------------------------------
----
  Cluster         Account     Login     Proper Name     Used   Energy
--------- --------------- --------- --------------- -------- --------
   baobab        rossigno     brero   BRERO Massimo     1159        0

In this example, we added the time -t Seconds parameter to have the output in seconds. Minutes
or Hours are also possible.

Please note :

By default, the CPU time is in Minutes
It takes up to an hour for Slurm to upate this information in its database, so be patient
If you don't specify a start, nor an end date, yesterday's date will be used.
The CPU time is the time that was allocated to you. It doesn't matter if the CPU was actually
used or not. So let's say you ask for 15min allocation, then do nothing for 3 minutes then run 1
CPU at 100% for 4 minutes and exit the allocation, then 7 minutes will be added to your CPU
time.

Tip : If you absolutely need a report including your job that ran on the same day, you can override the
default end date by forcing tomorrow's date :

sreport cluster AccountUtilizationByUser user=$USER start=2019-09-01
end=$(date --date="tomorrow" +%Y-%m-%d) -t seconds

From:
https://doc.eresearch.unige.ch/ - eResearch Doc

Permanent link:
https://doc.eresearch.unige.ch/hpc/accounting?rev=1764844477

Last update: 2025/12/04 10:34

https://doc.eresearch.unige.ch/
https://doc.eresearch.unige.ch/hpc/accounting?rev=1764844477

	Utilization and accounting
	Comparison of sreport, sacct, and sshare
	Resource accounting uniformization
	Resources available for research group
	Job accounting
	OpenXDMoD
	sacct
	Report and statistics with sreport
	sreport examples




