2025/10/29 08:20 1/24 Applications on the clusters

Applications and libraries

Table of Contents

Applications on the clusters
Module - Imod
How to use 'module’
What do | do when an application is not available via 'module' ?
Detailed example of using 'module’
Loading 'R’
Choosing the compiler toolchain
FOSS toolchain
Intel toolchain
Intel compiler licenses
fosscuda toolchain
Examples for selected applications
OpenMPI
Specify MCA parameters through "srun"
Conda
How to Create a Conda Environment in a Container
Benefits
Limitations
Step 1 - Define the Conda Environment
Step 2 - Build the Container
Step 3 - Use the Container
Conda environment management
Package management
ADF
Gaussian
Git
NVIDIA HPC SDK Installation in Home Directory on a Heterogeneous Cluster
Prerequisites
Installation Steps
Verify Installation
Gurobi
Jupyter notebook and Jupyter lab
Mathematica
Matlab
Parallel with Matlab
Pass sbatch arguments to Matlab
Compile your Matlab code
Matlab PATH
Matlab java.opts
CHROMIUM mailbox/texture errors
Wavelab
OpenCL
Distant Paraview
Python
Custom Python lib
Pip install from source
R project and RStudio
RStudio
R packages
Variant Effect Predictor (VEP)
Install species
Apptainer (was Singularity)
Intro

eResearch Doc - https://doc.eresearch.unige.ch/

ia;;;pdate: 2025/06/11 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

Pull an existing image

Convert a Docker image
Run a container
Modify the image (not persistent)
Modify the image (persistent)
References

Stata

TensorFlow

Compile and install a software in your /home

Applications on the clusters

An important number of applications and libraries are available on Baobab and Yggdrasil, and we
often offer multiple versions.

The magic which allows that is lmod with the module command. This is the recommended way to
load any application or libraries on the clusters.

On this page, we will give the most common module usage and give some example for a selection of
applications.

Module - Imod

The recommended way to load an application on the clusters is to use the module command. By
using module, you don't need to know where the software and libraries are physically located (the full
path), but instead you can just type the application name as if its path was in your PATH (this is
indeed what module does).

The module command can also set other important environment variables for an application, so it is
always recommended to use it.

How to use 'module’

These are the most common options you will use with module.

To get a complete list of applications available with module
module spider

To find the available versions of a certain application :

module spider <app name>

To load one (or more) application :

module load <app name_ 1> <app_name 2> ...

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

2025/10/29 08:20 3/24 Applications on the clusters

To load a specific version of an application :

module load <app name/version>

Hint : Module version. By choosing a module without specifying a version, you will always get the
latest version available. However, we always recommend to specify the version, as your code might

produce different results if you are using another version. If reproducibility of results is important
for you, you should definitely used a fixed version.

You can see the help for a particular module (it must be loaded first):
module help R

See the list of currently loaded modules :

module list

To unload all currently loaded modules :

module purge

Hint : If you are in a hurry you can also use ml instead of module for any of the above mentioned
commands :

ml spider

For more information, use the manpage man module.
What do | do when an application is not available via 'module' ?

If the application you need or the exact version is not available via module :

e First drop us an email at hpc@unige.ch and explain with as much detail as possible what you
need (provide scripts, links, etc.). If we can install what you need, we will do it, most of the time
via EasyBuild/module (you can check the list of available software).

* If we cannot, you can compile binaries in your $HOME directory and use them on any node of
the cluster (since your $HOME is accessible from any node). Make sure you load the compiler
with module first!

o Read more in the section Compile and install a software in your /nome

e Another interesting option is to use Singularity which allows you to run containers on the

clusters.

Detailed example of using 'module’
Loading 'R’

Let's go through an example of loading R.

eResearch Doc - https://doc.eresearch.unige.ch/

mailto:hpc@unige.ch
https://docs.easybuild.io/en/latest/version-specific/Supported_software.html#list-software

Iia2§;7update: 2025/06/11 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

First, let's find all available version of R :

[brero@login2 ~]$ module spider R

Description:
R is a free software environment for statistical computing and
graphics.

Versions:
R/3.2.3
R/3.3.1
R/3.3.2
R/3.5.1
R/3.6.0
R/3.6.2
R/4.0.0

Other possible modules matches:
APR APR-util BioPerl Bismark Blender CellProfiler CellRanger
CoordgenLibs DISCOVARdenovo DendroPy
[...]

Now some people just need the latest version available and can simply load it with module load R;
whitout specifying a version, you will always get the latest version.

But sometimes, you need to use the same version everytime and we recommend it. This is very
important as your code might produce different results if you are using another version. If
reproducibility of results is important for you, you should definitely used a fixed version.

To load a specific version, in this case R version 3.6.2 :

[brero@login2 ~]$ module load R/3.6.2
Lmod has detected the following error: These module(s) or extension(s)
exist but cannot be loaded as requested:
"R/3.6.2"
Try: "module spider R/3.6.2" to see how to load the module(s).

This fails as the module “cannot be loaded as requested”. This is usually because you are missing
dependencies.
The message also suggest to try the following command :

[brero@login2 ~]$ module spider R/3.6.2

R: R/3.6.2

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

2025/10/29 08:20 5/24 Applications on the clusters

Description:
R is a free software environment for statistical computing and
graphics.

You will need to load all module(s) on any one of the lines below before
the "R/3.6.2" module is available to load.
GCC/8.3.0 OpenMPI/3.1.4
Help:

Description

R is a free software environment for statistical computing
and graphics.

More information

- Homepage: https://www.r-project.org/

Included extensions

abc-2.1, abc.data-1.0, abe-3.0.1, abind-1.4-5, acepack-1.4.1,
adabag-4.2,

ade4-1.7-13, ADGofTest-0.3, aggregation-1.0.1, akima-0.6-2,
AlgDesign-1.2.0,

animation-2.6, aod-1.3.1, ape-5.3, arm-1.10-1, askpass-1.1,
asnipe-1.1.12,

assertthat-0.2.1, AUC-0.3.0, audio-0.1-6, b-a, backports-1.1.5,
bacr-1.0.1,

bartMachine-1.2.4.2, bartMachineJARs-1.1, base64-2.0, base64enc-0.1-3,

BatchJobs-1.8, BayesianTools-0.1.7, bayesm-3.1-4, BayesPen-1.0,
BB-2019.10-1,

BBmisc-1.11, bbmle-1.0.20, BCEE-1.2, BDgraph-2.62, bdsmatrix-1.3-3,

beanplot-1.2, beeswarm-0.2.3, BH-1.69.0-1, BiasedUrn-1.07,
bibtex-0.4.2,

bigmemory-4.5.33, bigmemory.sri-0.1.3, bindr-0.1.1, bindrcpp-0.2.2,

bio3d-2.4-0, biom-0.3.12, bit-1.1-14, bit64-0.9-7, bitops-1.0-6,
blob-1.2.0
[...1]

As the message explains, you need to load 2 dependencies GCC/8.3.0 and OpenMPI/3.1.4 before
you can load R.

You can then simply execute the following command :

eResearch Doc - https://doc.eresearch.unige.ch/

Last update: 2025/06/11

12:27 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

[brero@login2 ~]$ module load GCC/8.3.0 OpenMPI/3.1.4 R/3.6.2

Remember that GCC and OpenMPI are packaged together in the foss module. You can then load the
corresponding foss module instead which is shorter:

[brero@login2 ~]$ module load foss/2019b R/3.6.2

Then you can just invoke R by typing R in the terminal (instead of using the full path). Of course you
are still required to use Slurm and an sbatch script to launch your software.

Hint : To automatically load some modules at login, you can add something like this in your
$HOME/ . bashrc:

if [-z "$BASHRC READ"]; then

export BASHRC READ=1

Place any module commands here

module load GCC/8.3.0 OpenMPI/3.1.4 R/3.6.2
fi

Choosing the compiler toolchain

You have the choice between FOSS toolchain or Intel toolchain (license required).

If you want to compile your software against MPI, it is very important not to compile using directly
gcc, icc or similar commands, but rather rely on the wrappers mpicc, mpic'', ''mpicxx'' or
similar ones provided by module. All the newer versions of ''MPI'' will be
available through the use of [[hpc:applications and libraries#module - 1mod
module]]. ==== FO0SS toolchain ==== “module ~compiler "“mpi ~ |foss/2016a |gcc
4.9.3 |openmpi 1.10.2 | |foss/2016b |gcc 5.4.0 |openmpi 1.10.3 | |foss/2017a
|gcc 6.3.0 |openmpi 2.0.2 | |foss/2017b |gcc 6.4.0 |openmpi 2.1.1 |

| foss/2018a |gcc 6.4.0 |openmpi 2.1.2 | |foss/2018b |gcc 7.3.0 |openmpi 3.1.1
| |foss/2019a |gcc 8.2.0 |openmpi 3.1.3 | |foss/2019b |gcc 8.3.0 |openmpi
3.1.4 | |foss/2020a |gcc 9.3.0 |openmpi 4.0.3 | |foss/2020b |gcc 10.2.0
|openmpi 4.0.5 | |foss/2021la |gcc 10.3.0 |openmpi 4.1.1 | |foss/2021b |gcc
11.2.0 |openmpi 4.1.1 | |foss/2022a |gcc 11.3.0 |openmpi 4.1.4 | |foss/2022b
|gcc 12.2.0 |openmpi 4.1.4 | |foss/2023a |gcc 12.3.0 |openmpi 4.1.5 |

| foss/2023b |gcc 13.2.0 |openmpi 4.1.6 | Example for the latest version of
gcc:

module load foss

If needed, you can stick to a particular (or legacy) version:
module load foss/2021b

You can see the details of what is loaded in foss with:

module list

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

https://doc.eresearch.unige.ch/hpc/slurm#submitting_jobs
https://easybuild.readthedocs.io/en/latest/Common-toolchains.html#foss-toolchain
https://easybuild.readthedocs.io/en/latest/Common-toolchains.html#intel-toolchain

2025/10/29 08:20 7/24 Applications on the clusters

==== |ntel toolchain ==== "~ module ~ compiler ~ mpi ~ | intel/2016a | icc 16.0.1 | impi 5.1.2 | |
intel/2016b | icc 16.0.3 | impi 5.1.3 | | intel/2017a | icc 17.0.1 | impi 2017 Update 1 | | intel/2018a | icc
18.0.1 | impi 2018.1.163 | | intel/2019a | icc 19.0.1 | impi 2018.4.274 | | intel/2020a | icc 19.1.1.217|
impi 2019.7.217 | | intel/2021a | icc 2021.2.0 | impi/2021.2.0 | | intel/2021b | icc 2021.4.0 |
impi/2021.4.0 | | intel/2022a | icc 2022.1.0 | impi/2021.6.0 | Example for the latest version of icc from
Intel:

module load intel

If needed, you can stick to a particular (or legacy) version:

module load intel/2021a

You can see the details of what is loaded in intel with:

module list

If you want to use the intel compiler for mpi job, you need to export the variable:
export I MPI PMI LIBRARY=/usr/l1ib64/libpmi.so

intel mpi with slurm === Intel compiler licenses === If you want to use an old Intel compiler (before
2021a), you need to have your own Intel license compiler. Once you get the license you should copy it
to your home directory in a directory named Licenses ($HOME/Licenses). <note important>It isn't
anymore possible to get this Intel license. Instead you are required to use Intel oneAPI which doesn't
requires a license. Use intel/2021a or newer.</note> ==== fosscuda toolchain ==== Cuda is
provided through fosscuda or directly through CUDA module. The difference is that fosscuda is a
bundle of software and CUDA only provide the minimum. ~module ~CUDA ~ GCC ™ OpenMPI ™ |
fosscuda/2018b | 9.2.88 | 7.3.0 | 3.1.1 | | fosscuda/2019a | 10.1.105 | 8.2.0 | 3.1.3 | | fosscuda/2019b |
10.1.243|8.3.0 | 3.1.4 | | fosscuda/2020a | 11.0.2 | 9.3.0 | 4.0.3 | | fosscuda/2020b | 11.1.1 | 10.2.0 |
4.0.5 | ====== Examples for selected applications ====== We are providing a bunch of sbatch
examples on our GitLab repository here. Feel free to clone the repository and provide other examples
or fixes through pull request. ===== OpenMP| ===== ==== Specify MCA parameters through
srun==== Normally you would pass those parameters to "mpirun’ but as you are using "srun" with
Slurm, this is not possible directly. You should have a dedicated file with parameters located here:
$HOME/ .openmpi/mca-params.conf. Or you may use environment variable with OMPI_MCA
prefix. here for more details. ===== Conda ===== Use it

module load Anaconda3
==== Conda environment management ==== Create
conda create --name environment name

As the conda env itself contains a lot of files, it may be a good idea to store it on the scratch folder for
example.

conda create --prefix $HOME/scratch/test-env --name environment name

List

eResearch Doc - https://doc.eresearch.unige.ch/

https://slurm.schedmd.com/mpi_guide.html#intel_srun
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://gitlab.unige.ch/hpc/softs
https://www.open-mpi.org/faq/?category=tuning#setting-mca-paramsSee

Last update: 2025/06/11

12:27 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

conda env list

Activate

conda activate <env name>

Deactivate

conda deactivate

==== Package management ==== List packages in a given environment:
conda list
===== ADF ===== You can use SCM ADF on one ore more nodes of the cluster. Please note that

you must use module (see Module - Imod) in you sbatch script to set the variables correctly. Please
see ADF example on GitLab for some example and scripts related to ADF. <note important>Do not
launch ADF using srun. ADF is a wrapper which uses srun internally.</note> <note important>ADF
needs a fast local scratch space. On Baobab, the local scratch of each node is only about 180GB. If
you need more space, you need to find another solution (do the calculation on more nodes, do not
use local scratch, buy us new hard disks)</note> By default, the local scratch space is defined in the
SCM_TMPDIR environment variable, /scratch as set by module load ADF . This default value will
gives error when calling ADFview on the login nodes, given that /scratch does not exist there. You
can overcome it by using the Linux default /tmp :

capello@login2:~$ module load ADF/2019.104
capello@login2:~$ SCM TMPDIR=/tmp adfview

===== (Gaussian ===== You can use Gaussian g09 on one node of the cluster. Please note that
you must use module (see Module - Imod) in you sbatch script to set the variables correctly. When
using the module, it will set the variable GAUSS SCRDIR to /scratch of the local hard disk of the
allocated node. This should lower the calculation time and as well lower the usage of the shared
filesystem. See below for other optimizations. There are two versions of g09 on the cluster. Revision
c01 and dO1. Please see Gaussian example on GitLab for some examples and scripts related to
Gaussian. To optimize the run, you can add some lines in your job file. If you need more than 190 GB
of scratch space, you should add the line (adapt /home/yourusername to your own path):

%RWF=/scratch/,170GB, /home/yourusername/scratch/, -1

You may as well specify how much memory you want to use. By default, Gaussian will use 250MB of
ram. You can try with 50GB for example:

%Mem=50GB
You need to specify as well how many CPU cores you want to use:
%NProcShared=16

===== Gijt ===== To use git on the cluster you need to do the following: Add that to your

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

https://gitlab.unige.ch/hpc/softs/tree/master/a/ADF
https://gitlab.unige.ch/hpc/softs/tree/master/g/gaussian

2025/10/29 08:20 9/24 Applications on the clusters

${HOME}/.gitconfig:

[core]
createObject = rename

To invoke qit:
git clone --no-hardlinks

===== NVIDIA HPC SDK Installation in Home Directory on a Heterogeneous Cluster =====
https://developer.nvidia.com/hpc-sdk ==== Prerequisites ==== * Download and extract ONLY the
tarball by following the procedure: https://developer.nvidia.com/hpc-sdk-downloads * Ensure you have
the latest version of GCC loaded. You can check and load the module using the following commands:

(base) (yggdrasil)-[alberta@loginl ~]$ ml GCC
(base) (yggdrasil)-[alberta@loginl ~1$ ml

Currently Loaded Modules:
GCCcore/13.2.0 2) zlib/1.2.13 3) binutils/2.40 4) GCC/13.2.0

==== |nstallation Steps ==== 1. Start the NVIDIA HPC SDK Installer: As it'writte press enter to
continue

(base) (yggdrasil)-[alberta@loginl ~]$
nvhpc 2024 245 Linux x86 64 cuda 12.4/install

Welcome to the NVIDIA HPC SDK Linux installer!

You are installing NVIDIA HPC SDK 2024 version 24.5 for Linux x86 64.
Please note that all Trademarks and Marks are the properties
of their respective owners.

Press enter to continue...

2. Select the Installation config: Since we are setting up for a heterogeneous cluster, select the
network installation option:

A single system installation is appropriate for a single system or a
homogeneous cluster. A network installation should be selected for a
heterogeneous cluster. For either a single system or network installation,
the HPC SDK configuration (localrc) is created at install time and saved
in the installation directory.

An auto installation is appropriate for any scenario. The HPC SDK
configuration (localrc) is created at first use and stored in each user's
home directory.

1 Single system install
2 Network install

eResearch Doc - https://doc.eresearch.unige.ch/

https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk-downloads

Last update: 2025/06/11
12:27

3 Auto install

hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

Please choose install option:
2

3. Specify the full path you want to install the software:

Please specify the directory path under which the software will be
installed.

The default directory is /opt/nvidia/hpc_sdk, but you may install anywhere
you wish, assuming you have permission to do so.

Installation directory? [/opt/nvidia/hpc_sdk]
/home/users/a/alberta/HPC sdk

Installing NVIDIA HPC SDK version 24.5 into /home/users/a/alberta/HPC sdk
Making symbolic link in /home/users/a/alberta/HPC sdk/Linux x86 64

generating environment modules for NV HPC SDK 24.5 ... done.
Installation complete.
Please run add network host to create host specific localrc files:

/home/users/a/alberta/HPC sdk/Linux x86 64/24.5/compilers/bin/localrc.$host
on all other hosts you wish to run NVIDIA HPC SDK compilers.

For 64-bit NVIDIA HPC SDK compilers on 64-bit Linux systems, do the
following:
/home/users/a/alberta/HPC sdk/Linux x86 64/24.5/compilers/bin/add network ho
st

HPC SDK successfully installed into /home/users/a/alberta/HPC sdk

If you use the Environment Modules package, that is, the module load
command, the NVIDIA HPC SDK includes a script to set up the
appropriate module files.

% module load /home/users/a/alberta/HPC sdk/modulefiles/nvhpc/24.5
% module load nvhpc/24.5

Alternatively, the shell environment may be initialized to use the HPC SDK.
In csh, use these commands:

% set path = (/home/users/a/alberta/HPC sdk/Linux x86 64/24.5/compilers/bin
$path)

% setenv MANPATH
/home/users/a/alberta/HPC_sdk/Linux x86 64/24.5/compilers/man:"$MANPATH"

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

2025/10/29 08:20 11/24 Applications on the clusters

To use MPI, also set:

% set path =
(/home/users/a/alberta/HPC sdk/Linux x86 64/24.5/comm libs/mpi/bin $path)

In bash, sh, or ksh, use these commands:

$ export
PATH=/home/users/a/alberta/HPC_sdk/Linux x86 64/24.5/compilers/bin:$PATH

$ export
MANPATH=/home/users/a/alberta/HPC sdk/Linux x86 64/24.5/compilers/man:$MANPA
TH

To use MPI, also set:

$ export
PATH=/home/users/a/alberta/HPC sdk/Linux x86 64/24.5/comm libs/mpi/bin:$PATH

Please check https://developer.nvidia.com for documentation,
use of NVIDIA HPC SDK software, and other questions.

Now the installation is complete BUT the module method does not work and you MUST use the
export command.

A\ If you haven't read the installation instructions carefully, do
‘1 . sonow. Missing steps could lead to unforeseen adventures in
troubleshooting! (An angry admin may RTFM you) []

==== Verify Installation ==== Create and compile a Test program

(yggdrasil)-[alberta@loginl ~]$ cat test.cpp
#include <ranges>

int main(){
return 0;

}

(yggdrasil) - [alberta@loginl ~]$ cat sbatch nv
#!/bin/bash

#SBATCH --job-name=compile test

#SBATCH --output=compile test.out

#SBATCH --error=compile test.err

#SBATCH --time=00:01:00

#SBATCH --partition=debug-cpu

Load the necessary modules
ml GCC

eResearch Doc - https://doc.eresearch.unige.ch/

Iia2§;7update: 2025/06/11 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

Set up the environment for NVIDIA HPC SDK

export HPC SDK DIR=/home/users/a/alberta/HPC sdk

export PATH=$HPC SDK DIR/Linux x86 64/24.5/compilers/bin:$PATH
export MANPATH=$HPC SDK DIR/Linux x86 64/24.5/compilers/man:$MANPATH
export PATH=$HPC SDK DIR/Linux x86 64/24.5/comm_libs/mpi/bin:$PATH

Run add network host to create host-specific localrc files
$HPC SDK DIR/Linux x86 64/24.5/compilers/bin/add network host

Compile the test.cpp file
""mpic++'"' test.cpp -0 test

(yggdrasil) - [alberta@loginl ~]$ sbatch sbatch nv
Submitted batch job 33866816

e Ensure to run the add _network host command on
all nodes in your heterogeneous cluster to create the
necessary localrc files.

e e Make sure the environment variables are set in your
@ shell configuration files (e.g., ".bashrc’, ".cshrc) for
persistent settings across sessions.

* For more details and further documentation, visit the
[NVIDIA HPC SDK
website](https://developer.nvidia.com).

===== Gurobi ===== NB, the following instructions come from
<https://hpc-community.unige.ch/t/gurobi-solver-license-issue/459>. We provide an internal Gurobi
token server, here how to use it:

capello@login2:~$ module load Gurobi
capello@login2:~$ gurobi cl --tokens

Checking status of Gurobi token server 'master.cluster'...

Token server functioning normally.
Maximum allowed uses: 4096, current: 0

capello@login2:~$

===== Jupyter notebook and Jupyter lab===== Jupyter notebook can run on our clusters, however
we do not have a dedicated server for Jupyter. This means you need to submit a job and request
some resources before you can connect to your instance of Jupyter notebook. The easiest way is to
launch a session (on Baobab only for now) using OpenOnDemand If it isn't working for you, check our
git repo which as some example scripts to launch Jupyter as Slurm job. You can also read : [tutorial]
Jupyter notebook or updated Tutorial done for HPC-Lunch <note tip>For interactive programs such as
Jupyter notebook, you might want to use the public-interactive-cpu partition (Which partition
for my job) </note> ===== Mathematica ===== If you would like to use a different license server

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

https://developer.nvidia.com
https://hpc-community.unige.ch/t/gurobi-solver-license-issue/459
https://doc.eresearch.unige.ch/hpc/how_to_use_openondemand
https://gitlab.unige.ch/hpc/softs/-/tree/master/j/jupyter
https://gitlab.unige.ch/hpc/softs/-/tree/master/j/jupyter
https://hpc-community.unige.ch/t/tutorial-jupyter-notebook/479
https://hpc-community.unige.ch/t/tutorial-jupyter-notebook/479
https://gitlab.unige.ch/hpc/hpc-lunch/-/blob/main/Session-2023.05.06/how-to-launch-jupyterlab-on-Baobab.md
https://doc.eresearch.unige.ch/hpc/slurm#which_partition_for_my_job
https://doc.eresearch.unige.ch/hpc/slurm#which_partition_for_my_job

2025/10/29 08:20 13/24 Applications on the clusters

(by default mathim.unige.ch), you can specify its URL in the
${HOME}/.Mathematica/Licensing/mathpass file, prependend by an exclamation mark:

capello@login2:~$ MATHEMATICA LICENSE SERVER URL=mathlm.unige.ch
capello@login2:~$ mkdir -p ~/.Mathematica/Licensing/
capello@login2:~$ cat <<EOF >~/.Mathematica/Licensing/mathpass

I ${MATHEMATICA LICENSE SERVER URL}

EOF

capello@login2:~$ cat ${HOME}/.Mathematica/Licensing/mathpass
Imathlm.unige.ch

capello@login2:~$

See http://support.wolfram.com/kb/25655 and http://support.wolfram.com/kb/112 for more
information. ===== Matlab ===== Matlab is available in Baobab in different versions:

$ module spider matlab

Versions:
MATLAB/2021a
MATLAB/2021b
MATLAB/2022a

Keep in mind that it's a licensed program, and that the licenses are shared with the whole university.
To be fair with the other users, we have set up a limitation on the number of licenses you can use. We
kindly ask you to specify in your sbatch file that you are using Matlab in order to keep the limitation
effective. If you are using some licensed toolbox, like Wavelet Toolbox, you need to specify it as well.
If you don't, your job may be killed without further notice in case we are out of licenses. Example to
specify that you need Matlab:

#SBATCH --licenses=matlab@matlablm.unige.ch

Example to specify that you need the Wavelet Toolbox:

#SBATCH --licenses=wavelet-toolbox@matlablm.unige.ch

See the licenses available on Baobab

scontrol show lic

If you need a license not listed here, please ask us at hpc [at] unige [dot] ch. <note important>You
need to specify at LEAST the Matlab license, and zero or more toolbox.</note> To run Matlab in batch

mode, you can create a batch file like this one:

#!/bin/bash

eResearch Doc - https://doc.eresearch.unige.ch/

http://support.wolfram.com/kb/25655
http://support.wolfram.com/kb/112

Iia;;;deate: 2025/06/11 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

#SBATCH --cpus-per-task=1

#SBATCH --ntasks=1

#SBATCH --licenses=matlab@matlablm.unige.ch
module load MATLAB/2021b

BASE MFILE NAME=hello

unset DISPLAY

echo "Running ${BASE_MFILE_NAME}.m on $(hostname)"

srun matlab -nodesktop -nosplash -nodisplay -r ${BASE MFILE NAME}

In this example, you need to have your code in the file hello.m. You submit the Matlab job like a
normal sbatch SLURM job:

sbatch ./yourBatch

==== Parallel with Matlab ==== Since version 2014, you are not limited to 12 CPU cores anymore.
Please see Matlab on gitlab for some examples and scripts related to Matlab parallel As we are talking
about parallel and not distributed Matlab, you can consided Matlab as a multithread application. See
how to submit Multithreaded jobs. <note important>If you are a parallel or distributed Matlab
specialist and you have some hints, you are very welcome to contact us!</note> ==== Pass sbatch

arguments to Matlab ==== You can pass arguments from sbatch to Matlab as described below.
Example of sbatch file (sbatch.sh)

sbatch part as usual

BASE_MFILE NAME=test
MATLAB MFILE=${BASE MFILE NAME}.m

unset DISPLAY
module load MATLAB/2021b

#the variable you want to pass to matlab
job array index=${SLURM ARRAY TASK ID}

echo "Starting at $(date)"
echo "Running ${MATLAB_MFILE} on $(hostname)"

we call the matlab function (see the parenthesis around the argument) and
the argument type will be integer.

srun matlab -nodesktop -nosplash -nodisplay -r

"${BASE_MFILE_NAME} ($job_array_index)"

echo "Finished at $(date)"

Example of Matlab file (test.m)

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

https://gitlab.unige.ch/hpc/softs/tree/master/m/matlab/parallel
https://doc.eresearch.unige.ch/hpc/slurm#multithreaded_jobs

2025/10/29 08:20 15/24 Applications on the clusters

function test(job array index)

fprintf('array index: %d\n', job _array index)

See arguments with Matlab on gitlab for more examples. ==== Compile your Matlab code ====
Thanks to Philippe Esling for his contribution to this procedure. The idea of compiling Matlab code is to

save on licenses usage. Indeed, once compiled, a Matlab code can be run without using any license.
The Matlab compiler is named MCC First load the needed modules:

module load foss/2016a matlab/2016b
Let's say you want to compile this . m file:
function hello(name)

strcat({'Hello '}, name)
end
This operation compiles it (this takes some time) :

DISPLAY="" mcc -m -v -R '-nojvm, -nodisplay' -o hello hello.m

If you have some other .m files that you need to include, you need to explicitly specify their location
as follows:

mcc -m -v -R '-nojvm, -nodisplay' -I /path/to/functions/ -I
/path/to/other/functions/ [...]

The resulting files are a text file named readme. txt, a script named run_hello.sh and an

executable named hello. You can then launch the executable hello like any other executable using a
sbatch script:

#!/bin/bash

#SBATCH --partition=debug-cpu
#SBATCH --ntasks=1

module load foss/2016a matlab/2016b

srun ./hello Philippe

In this case, Philippe is an argument for the function hello. Be careful, arguments are always passed
to Matlab as strings. <note important>You do NOT need to specify the Matlab license once compiled,
and you are not restricted by the number of available licenses.</note> Please see compile Matlab on
gitlab for some examples and scripts related to Matlab compilation. ==== Matlab PATH ==== If you
need to add a directory to the Matlab path, for example to use a toolbox installed by you, please
proceed as follow. Add the needed path recursively to matlab path:

addpath(genpath('/home/sagon/tests/matlab/dtb/decoding toolbox v3.991'))

Save the current matlab path to the default matlab definition path:

eResearch Doc - https://doc.eresearch.unige.ch/

https://gitlab.unige.ch/hpc/softs/tree/master/m/matlab/arguments
https://gitlab.unige.ch/hpc/softs/tree/master/m/matlab/compile
https://gitlab.unige.ch/hpc/softs/tree/master/m/matlab/compile

Last update: 2025/06/11

12:27 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

savepath('/home/sagon/pathdef.m")
You can now access any file from the toolbox directly:

demo2 simpletoydata

==== Matlab java.opts ==== If you are getting erros such as the one listed here when using Matlab
through X2go, you can try the following changes to mitigate the issue. Create a file named java.opts
in the default startup folder which is the folder from which you started MATLAB, i.e. the folder where
you type the matlab command (usually your ${HOME} base folder). Put the following content in it:
-Dsun.java2d.xrender=false
And restart Matlab. This will probably reduce the graphical performance but should not impact the
computation time. ==== CHROMIUM mailbox/texture errors ==== If you are getting erros such as
the one listed here and here when using Matlab through X2go, unfortunately we have not found a
once-and-for-all solution yet. Please contact us providing the MATLAB version as well as the “salloc’
full command. ==== Wavelab ==== To use the Wavelab library with Matlab, load Matlab 2014 :
module load matlab/2014b

Launch Matlab as usual and type this command to go to the Wavelab library:

cd /opt/wavelab/Wavelab850/
Wavepath (answer /opt/wavelab/Wavelab850)

===== 0penCL ===== You can use OpenCL on CPU. To compile your software, please proceed as
following:

gcc -I/opt/intel/opencl-1.2-sdk-6.3.0.1904/include/ -
L/opt/intel/opencl-1.2-sdk-6.3.0.1904/1ib64/ -W1, -

rpath, /opt/intel/opencl/1ib64/ -10penCL -o hello hello.c

===== Distant Paraview ===== Thanks to Orestis for this tutorial. Warning : * Do not use at any
point X11 forwarding it will be done by paraview itself. * You must have the SAME version of paraview
on your local machine and on baobab (5.3.0). Baobab connection:

ssh login2.baobab.hpc.unige.ch

Get some resources in interactive mode (4 cores here, you can add a lot more options here if you
want). You can even ask for GPU nodes (more on this afterwards):

salloc -n 4
Determine on which node your resources are affected (here node001):

echo $SLURM JOB NODELIST

SLURM JOB_NODELIST=node001

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

https://www.mathworks.com/matlabcentral/answers/373897-external-monitor-throws-java-exception
https://ch.mathworks.com/help/matlab/matlab_env/start-matlab-on-linux-platforms.html
https://bugs.chromium.org/p/chromium/issues/detail?id=481398
https://github.com/cefsharp/CefSharp/issues/1678

2025/10/29 08:20 17/24 Applications on the clusters

On another terminal (in your pc) open an ssh tunnel to your NODE (in this case node001):
ssh -L 11150:n0de001:11111 login2.baobab.hpc.unige.ch
On the first terminal load paraview (if not loaded by default) and launch pserver:

module load foss/2016b ParaView/5.3.0-mpi
srun pvserver --server-port=11111

If you asked for GPU nodes the command is slightly different:
srun pvserver --server-port=11111 -display :0.0 --use-offscreen-rendering

On your local machine launch paraview and click on Connect. There you should find the menu to add
a server. Put the name you want in Name, leave Client/Server as Server Type, and "localhost™ in Host.
The only very important configuration is the port which should be 11150 (the same number as in
"11150:n0de001" from before). Save the configuration (click on Configure and Save, leave startup as
Manual) and the click on Connect. The remote paraview session should start immediately. There
should be an error message: Display is not accessible on the server side. Remote rendering will be
disabled. This message is normal. ===== Python ===== Default Python version on the cluster is
Python 2.7.5. You can have access to modern Python through Module - Imod The Python version
provided by module come with a lot of packages already installed. You can check with module spider
what are the packages provided. Example:

ml spider Python/3.7.4
[...1]

Included extensions

alabaster-0.7.12, asnlcrypto-0.24.0, atomicwrites-1.3.0, attrs-19.1.0,
Babel-2.7.0, bcrypt-3.1.7, bitstring-3.1.6, blist-1.3.6, certifi-2019.9.11,
cffi-1.12.3, chardet-3.0.4, Click-7.0, cryptography-2.7, Cython-0.29.13,
deap-1.3.0, decorator-4.4.0, docopt-0.6.2, docutils-0.15.2, ecdsa-0.13.2,
future-0.17.1, idna-2.8, imagesize-1.1.0, importlib metadata-0.22,
ipaddress-1.0.22, Jinja2-2.10.1, joblib-0.13.2, liac-arff-2.4.0,
MarkupSafe-1.1.1, mock-3.0.5, more-itertools-7.2.0, netaddr-0.7.19,
netifaces-0.10.9, nose-1.3.7, packaging-19.1, paramiko-2.6.0,
pathlib2-2.3.4,

paycheck-1.0.2, pbr-5.4.3, pip-19.2.3, pluggy-0.13.0, psutil-5.6.3,
py-1.8.0,

py_expression eval-0.3.9, pyasnl-0.4.7, pycparser-2.19, pycrypto-2.6.1,
Pygments-2.4.2, PyNaCl-1.3.0, pyparsing-2.4.2, pytest-5.1.2, python-
dateutil-2.8.0, pytz-2019.2, requests-2.22.0, scandir-1.10.0,
setuptools-41.2.0, setuptools scm-3.3.3, six-1.12.0, snowballstemmer-1.9.1,
Sphinx-2.2.0, sphinxcontrib-applehelp-1.0.1, sphinxcontrib-devhelp-1.0.1,
sphinxcontrib-htmlhelp-1.0.2, sphinxcontrib-jsmath-1.0.1, sphinxcontrib-
qthelp-1.0.2, sphinxcontrib-serializinghtml-1.1.3, sphinxcontrib-
websupport-1.1.2, tabulate-0.8.3, ujson-1.35, urllib3-1.25.3,
virtualenv-16.7.5, wcwidth-0.1.7, wheel-0.33.6, xlrd-1.2.0, zipp-0.6.0

If you need numpy, SciPy, pandas, mpidpy, they are provided by the SciPy-bundle module. Example to

eResearch Doc - https://doc.eresearch.unige.ch/

Last update: 2025/06/11

12:27 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

load a recent version of Python with SciPy:
ml GCC/8.2.0-2.31.1 OpenMPI/3.1.3 Python/3.7.2 SciPy-bundle/2019.03

==== Custom Python lib ==== If you need to install a python library or a different version of the
ones already installed, virtualenv is the solution. Python-virtualenv is installed on Baobab
http://www.virtualenv.org/en/latest/ Begin by loading a version of python using module (see above)
Create a new virtualenv if it's not already existing (put it where you want and name it like you want):
For virtualenv 20 or above (starting from Python/3.8.2):

capello@login2:~$ virtualenv ~/baobab python env
For previous virtualenv versions:
capello@login2:~$ virtualenv --no-site-packages ~/baobab python env

This will create a directory named baobab_python_env in your home directory. Every time you want to
use your virtualenv, you should activate it first:

. ~/baobab python env/bin/activate
Install all the needed packages in the environment:
~/baobab python env/bin/pip install mpidpy
Use your new environment:
~/baobab _python env/bin/python

==== Pip install from source ==== By default when you use pip to install a library, it will download
a binary of .whl file instead of building the module from source. This may be an issue if the module
itself depend on a custom libc version or is optimized for a given kind of CPU. In this case, you can
force pip to install a module by building it from source. Example to build hpy from source. The h5py
argument to —no-binary is to specify that you want to build from source only h5py.

pip install --no-binary h5py h5py

===== R project and RStudio ===== The latest version of R (if it's not the latest, you can ask us to
install it) is installed on the cluster. Please see here for an sbatch example with R. You will find as well
an exemple using the R package parallel. External helper to create sbatch scripts for R golembash
==== RStudio ==== RStudio is IDE (Integrated Development Environment) for R, basically a more
user friendly version than plain R. With the Baobab upgrade to CentOS 7 (cf.
https://hpc-community.unige.ch/t/baobab-migration-from-centos6-to-centos7/361) we do not provide
anymore a central RStudio. Instead, you can download the upstream Open Source binary RStudio
Desktop version (cf. https://rstudio.com/products/rstudio/download/) and directly use it, here the
instructions: - install it in your ${HOME} folder:

capello@login2:~$ mkdir Downloads
capello@login2:~$ cd Downloads

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

http://www.virtualenv.org/en/latest/
https://gitlab.unige.ch/hpc/softs/tree/master/r/R
https://data-analytics-lab.shinyapps.io/golembash/
https://hpc-community.unige.ch/t/baobab-migration-from-centos6-to-centos7/361
https://rstudio.com/products/rstudio/download/

2025/10/29 08:20 19/24 Applications on the clusters

capello@login2:~/Downloads$ wget ${URL FOR rstudio-${VERSION}-x86 64-
fedora.tar.gz}

[...]

capello@login2:~/Downloads$ tar axvf rstudio-${VERSION}-x86 64-fedora.tar.gz
[...]

capello@login2:~/Downloads$

- launch an interactive graphical job:

- connect to the cluster using
[[hpc:access the hpc clusters#gui accessdesktop with x2go|GUI access /
Desktop with X2Go]] or using ''ssh -Y'' from a machine with an X server such
as [[hpc:access the hpc clusters#from linux and mac os|Linux or Mac]]. \\

- start an interactive session on a node (see
[[hpc/slurm#interactive jobs|Interactive Slurm jobs]]): <code console>

capello@login2:~$ salloc -p debug-cpu -n 1 -c 16 -x11 salloc: Pending job allocation 39085914 salloc:
job 39085914 queued and waiting for resources salloc: job 39085914 has been allocated resources
salloc: Granted job allocation 39085914 capello@node001:~$ </code> Doing so, you will have 16
cores on one node of the partition debug-cpu for a max time of 15 minutes. Specify the appropriate
duration time, partition, etc. like you would do for a normal job.

- load one of the R version supported by RStudio, for example:<code
console>

capello@node001:~$ module spider R/3.6.0

R: R/3.6.0

Description:
R is a free software environment for statistical computing and
graphics.

You will need to load all module(s) on any one of the lines below
before the "R/3.6.0" module is available to load.

6CC/8.2.0-2.31.1 OpenMPI/3.1.3

[...] capello@node001:~$ module load GCC/8.2.0-2.31.1 OpenMPI/3.1.3 capello@node001:~$ module
load PostgreSQL/11.3-Python-3.7.2 capello@node001:~$ module load R/3.6.0 capello@node001:~$
</code>

- run RStudio : <code console>

capello@node001:~$ ~/Downloads/rstudio-${VERSION}/bin/rstudio </code> <note important>Latest
version of Rstudio needs an aditional dependency loaded

module load PostgreSQL/11.3-Python-3.7.2

eResearch Doc - https://doc.eresearch.unige.ch/

Last update: 2025/06/11

12:27 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

</note> ==== R packages ==== You can install R packages as a user. Just follow once the steps
given below: Create a file named .Rprofile (note the dot in front of the file) in your home directory
with the following content:

(yggdrasil) - [alberta@loginl ~]$ cat ~/.Rprofile

local({

r = getOption("repos") # hard code the Switzerland repo for CRAN

r["CRAN"] = "https://stat.ethz.ch/CRAN/"

options(repos = r)

})

The first line is purely informative. The output may break things such as package installation. Feel
free to comment out this line or remove it. Create a file named .Renviron (note the dot in front of the
file) in your home directory with the following content:

(yggdrasil)-[alberta@loginl ~]$ cat ~/.Renviron
R LIBS=~/Rpackages/

Create a directory where to store the installed R packages:
(yggdrasil) - [alberta@loginl ~]$ mkdir ~/Rpackages

Once done, make sure you have loaded R with module. Then, from a R command line you can install a
R package. For R version 3.5 and below :

install.packages("ggplot2")
For R version 3.6 or above :

Sys.setenv(R _INSTALL STAGED = FALSE)
install.packages("ggplot2")

Use your newly installed package:
library(ggplot2)

Example:

(yggdrasil) - [alberta@loginl scratch]$ cat sbatch.sh
#!/bin/sh

#SBATCH --partition=shared-cpu

#SBATCH --time=0:05:00

module load GCC/11.3.0 OpenMPI/4.1.4 R/4.2.1
srun R CMD BATCH test.r

(yggdrasil) - [alberta@loginl scratch]l$ cat test.r

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

2025/10/29 08:20 21/24 Applications on the clusters

Set the working directory
#setwd("/srv/beegfs/scratch/users/a/alberta")

Clear the global environment
rm(list = 1s())

Sys.setenv(R INSTALL STAGED = FALSE)

Install and load packages
install.packages("rootSolve")
library(rootSolve)

(yggdrasil) - [alberta@loginl scratch]$ sbatch sbatch.sh
sbatch sbatch.sh

Submitted batch job 25456882
(yggdrasil) - [alberta@loginl scratch]$ sac -j 25456882

JobID JobName Account User NodeList NTasks
Start End State
25456882 sbatch.sh burgi alberta cpul49
2023-07-14T10:25:13 2023-07-14T10:25:29 COMPLETED
The log file is test.r.Rout and you should see everything is working :) ===== Variant Effect Predictor
(VEP) ===== This tutorials is inspired from VEP documentation:

https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#singularity According vep
maintainers (https://github.com/Ensembl/ensembl-vep/issues/1515) each users should have one
instance of vep. Please edit destination use the following sbatch to install your instance.

To install species edit the following option in the install cmd line:
"-a cfp -s <cpecies name> "

(baobab) - [alberta@login2 ~]$ mkidr $HOME/vep singularity
(baobab) - [alberta@login2 vep singularity]$ cd $HOME/vep singularity
(baobab) - [alberta@login2 vep singularity]$ vim install vep.sh

#!/bin/bash

#SBATCH --job-name=install vep
#SBATCH --output=output.log
#SBATCH --partition=shared-cpu
#SBATCH --time=01:00:00
#SBATCH --cpus-per-task 12
#SBATCH --mem=12GB

#SBATCH --chdir=/scratch
#SBATCH --export=All

srun singularity pull --name vep.sif docker://ensemblorg/ensembl-vep

eResearch Doc - https://doc.eresearch.unige.ch/

https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#singularity
https://github.com/Ensembl/ensembl-vep/issues/1515

Last update: 2025/06/11

12:27 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

srun mkdir vep data

srun singularity exec vep.sif INSTALL.pl -c vep data -a p -g all -r vep data
srun mkdir -p $HOME/vep singularity/install dir

srun mv * $HOME/vep singularity/install dir

==== |nstall species ==== To download species after the installation run the following cmd line(it
assumes you have the same directory arch as above):

It ran the install command on debug-cpu slurm partition assuming the install required less than 15
min otherwise use another partition with -time=HH:mm:ss

(baobab) - [alberta@login2 ~]$ cd

/home/users/a/alberta/vep singularity/install dir
(baobab) - [alberta@login2 ~]$ srun singularity exec vep.sif INSTALL.pl -c
vep data -a cf -s <species name>

===== Apptainer (was Singularity) ===== ==== Intro ==== Apptainer is a Docker like for HPC. It
is available directly on the OS, not through module.

As you don't have root access on Baobab, you cannot build recipe file on Baobab. If you need to do
this, you may want to build the image on your own machine and transfer the image to Baobab.

You can download existing images from shub (singularity hub) or from docker (docker public or
private registry).

The image will be converted to a read-only squashfs on Baobab disk. It's not possible to have writable
images as user. Instead you should build the image as sandbox.

Apptainer images are immutable, but it is possible to append an overlay, see below. === Pull an
existing image ===

Do not run the following commands on login node
I"It's using too much cpu

Exemple with Rstudio: Create a project directory and pull the image from compute node:

(baobab) - [alberta@login2 ~]$ MYPROJECT="rocker"
(baobab) - [alberta@login2 ~]$ mkdir -p singularity/$MYPROJECT
(baobab) - [alberta@login2 ~]$ cd !'$

(baobab) - [alberta@login2 rocker]$ salloc --partition=shared-cpu --

time=00:30:00 --cpus-per-task 12

(baobab) - [alberta@cpu300 rocker]$ apptainer pull docker://rocker/rstudio:4.2
(baobab) - [alberta@cpu300 rocker]$ 1s

rstudio 4.2.sif

And Voila; | get my sif image rstudio_4.2.sif ==== Convert a Docker image ==== Example to
download an existing docker image and build a squashfs image from it:

apptainer build lolcow.simg docker://godlovedc/lolcow

Then you will end-up with an Apptainer image named lolcow.simg. Example to download an image
from a custom registry:

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

2025/10/29 08:20 23/24 Applications on the clusters

apptainer build docker://registry.gitlab.com/flowkit/webservice/compute

<note tip>By default, Apptainer will build your image in “/tmp". This is an issue on the login node
because "tmp" is small. You should instead specify an alternate "tmp’
https://apptainer.org/docs/user/main/build_env.html#temporary-folders</note> ==== Run a
container ==== Once you have a singularity image, you can do various things: * run a container (the
script named singularity at the root of the image, proceed as follow

apptainer run lolcow.simg

When you import a docker image, the ENTRYPOINT is used to create the singularity run script. * exec
to execute a single command inside the container. * shell to launch a container and to spawn a shell
(/bin/bash) ==== Modify the image (not persistent) ==== If you need for example to install a new
rpm inside the image, you can use an ephemeral overlay. In the example below, we are using
—fakeroot to behave as if we were root inside the container.

apptainer exec --fakeroot --writable-tmpfs [...]

Here you can install an rpm for example, but as soon as you close the container, it is “reset”. <note
important>if you are on a compute node, the variable $TMPDIR is set to /scratch. You should either
unset it or mount /scratch</note> ==== Modify the image (persistent) ==== The way to go with
apptainer is to add a writable overlay. This is an ext3 fs. You can create for example a sparse 10G
image like that:

(baobab) - [sagon@cpu065 ~]$ apptainer overlay create --fakeroot --sparse --
size 10000 my overlay.img

Notice we added the —fakeroot flag. If you don't, you won't be able to use the image when
apptainer is started with —fakeroot You can then start apptainer

(baobab) - [sagon@cpuB65 ~]$ apptainer exec --fakeroot --overlay
my overlay.img [...]

==== References ==== For more examples, please check the following posts : * [tutorial] launch
openpose with GPU support through Singularity * Help needed running MPI/Palabos software using
Singularity * Quick guide to Docker, singularity and shifter ===== Stata ===== Stata versions * 14
mp 24 cores * 16 mp 32 cores * 17 mp 32 cores are availables on the cluster. To use it, you need to
add load Stata using module. Example to load Stata 17:

module load Stata/17

The Stata binaries are stata-mp or xstata-mp for the graphical interface. If you need a graphical
interactive session, please proceed as follows from x2go for example:

salloc -nl -c 16 --partition=interactive-cpu --time=15:00 --x11 srun -nl -N1
--pty $SHELL
xstata-mp

Doing so will launch a graphical Stata on a debug node with 16 cores for a 15 minutes session. See on
this document for other partition/time limits. <note tip> Please keep in mind that the cluster may be

eResearch Doc - https://doc.eresearch.unige.ch/

https://apptainer.org/docs/user/main/build_env.html#temporary-folders
https://hpc-community.unige.ch/t/tutorial-launch-openpose-with-gpu-support-through-singularity/593
https://hpc-community.unige.ch/t/tutorial-launch-openpose-with-gpu-support-through-singularity/593
https://hpc-community.unige.ch/t/help-needed-running-mpi-palabos-software-using-singularity/1075
https://hpc-community.unige.ch/t/help-needed-running-mpi-palabos-software-using-singularity/1075
https://hpc-community.unige.ch/t/quick-guide-to-docker-singularity-and-shifter/194

Last update: 2025/06/11

12:27 hpc:applications_and_libraries https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

full and that you will have to wait until the resources are allocated to you. It's best to launch stata in
batch mode instead of using it interactively.</note> To launch Stata in batch mode, see the
Multithreaded jobs section and specify that you want one task and n cpus. Please see here for an
sbatch example with Stata. ===== TensorFlow ===== Please see TensorFlow on gitlab for some
examples and scripts related to TensorFlow. ATTENTION , the module:TensorFlow we provide are
compiled with GPU support (see https://www.tensorflow.org/install/source#gpu_support), thus they
must be used on a GPU partition (cf. Gpu resources and Gpu jobs section). You can also read this post
. * Getting started with TensorFlow on Baobab (ImportError: libcuda.so.1) ====== Compile and
install a software in your /home ====== The following posts can inspire you if you need to compile
or install a software in your $HOME directory : * [HOWTO] compile a software in your home directory *
[howto] install and run cudimot * Remember, you do not have sudo rights. Rules and etiquette

From:
https://doc.eresearch.unige.ch/ - eResearch Doc

Permanent link:
https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

Last update: 2025/06/11 12:27

https://doc.eresearch.unige.ch/ Printed on 2025/10/29 08:20

https://doc.eresearch.unige.ch/hpc/slurm#multithreaded_jobs
https://gitlab.unige.ch/hpc/softs/tree/master/s/stata
https://gitlab.unige.ch/hpc/softs/tree/master/t/tensorflow/hello
https://www.tensorflow.org/install/source#gpu_support
https://doc.eresearch.unige.ch/hpc/slurm#gpu
https://doc.eresearch.unige.ch/hpc/slurm#gpgpu_jobs
https://hpc-community.unige.ch/t/getting-started-with-tensorflow-on-baobab-importerror-libcuda-so-1/493
https://hpc-community.unige.ch/t/howto-compile-a-software-in-your-home-directory/325
https://hpc-community.unige.ch/t/howto-install-and-run-cudimot/853
https://doc.eresearch.unige.ch/hpc/best_practices#rules_and_etiquette
https://doc.eresearch.unige.ch/
https://doc.eresearch.unige.ch/hpc/applications_and_libraries?rev=1718117165

	Applications on the clusters
	Module - lmod
	How to use 'module'
	What do I do when an application is not available via 'module' ?

	Detailed example of using 'module'
	Loading 'R'

	Choosing the compiler toolchain

