2025/08/03 05:23 1/25

Slurm and job management

Table of Contents

Slurm and job management
What is Slurm ?
Resources
Partitions
What is a partition ?
Which partition for my job ?
Partitions lists
Clusters partitions
Private partitions
Wall time
Memory
GPU
CPU
CPU types
Single thread vs multi thread vs distributed jobs
Submitting jobs
Batch mode (sbatch)
Monothreaded jobs
Multithreaded jobs
Distributed jobs
GPGPU jobs
Interactive jobs
Job array
Advanced usage
Job dependency
Master/Slave
Checkpoint
Reservation
Job monitoring
Email notification of job events
Memory and CPU usage
Energy usage
CPUs
GPUs
Other tools
spart
pestat
seff
HDF5 profiling plugin
Cancel jobs
Job priorities
How is the priority of a job determined ?
Priority vs. waiting time
Backfill mechanism

Slurm and job management

H When we talk about cpu, we mean core of a cpu since all modern cpu are multi cores.

So, one cpu = one core.

eResearch Doc - https://doc.eresearch.unige.ch/

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

What is Slurm ?

According to Slurm official website :

Slurm is an open source, fault-tolerant, and highly scalable cluster management and job scheduling
system for large and small Linux clusters. Slurm has three key functions.

e jt allocates exclusive and/or non-exclusive access to resources (compute nodes) to users for
some duration of time so they can perform work.

e jt provides a framework for starting, executing, and monitoring work (normally a parallel job) on
the set of allocated nodes.

e jt arbitrates contention for resources by managing a queue of pending work.

Great, so what does it mean for the users of our HPC clusters ?

It means Slurm is the only way to being granted HPC resources. In order to request the resources you
need to submit a job to Slurm or to ask it to allocate resources.

It is important to learn a few terms that are specific to Slurm :

¢ a resource: this may be cpu, gpu, running time (called wall time), memory, license or disk

* a job once resources are granted to you, your code is running on them and releases them when
it finish. When you “submit a job”, you'll ask resources and your job will be put on waiting
queue.

¢ a partitions determines on which resources your job will run

e a priority determine when you'll get access to a resource and your job will start

Resources

Before explaining more about Slurm jobs, it is important to understand to concept of partition and
some other limits.

Partitions

What is a partition ?

A partition is a group of compute nodes accessible with some specific properties (such as maximum
execution time, etc.).

e There are two main categories of partitions :
o public partitions are available for everybody on the clusters,
o private partitions are only available to their owners.
e When the HPC team buys compute nodes with UNIGE's funds, those nodes are 100% public
which means they will be inside public partitions (public-*).
o Public partitions allow a maximum execution time of 4 days

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

https://slurm.schedmd.com/

2025/08/03 05:23 3/25 Slurm and job management

o Public-short-* allows a maximum execution time of 1 hour, with a maximum of 6 cpu per
jobs and 1 job running per user (multiple submit is allowed).
* When a research group buys compute nodes with their funds (private, FNS, etc.), those nodes
will be inside both shared and private partitions.
o Private partitions give a higher priority to jobs (shorter waiting time) ;
o Private partitions also allow a maximum execution time of 7 days
e When the owner of the private partition is not using it, the nodes can be used by anyone else
in the cluster since the nodes are shared in the shared partitions (shared-*).
o Hence, the (shared- *) partitions contain all the cluster's nodes (public and private
nodes)
o Shared partitions allow a maximum execution time of 12 hours

Our clusters Baobab and Yggdrasil are heterogeneous, which means the nodes in a partition are not
necessarily identical.

You can get a complete list of the nodes and their specifications in For advanced users - Compute
nodes

Which partition for my job ?

This is a very important question, and choosing the right partition can save you (and others) a lot of
time.

e Shared partions :
o shared-cpu - for CPU jobs that need to run up to 12h
o shared-gpu - for GPU jobs that need to run up to 12h
o shared-bigmem - same as shared-cpu, but when you need a crazy amount of RAM
(max. 12h)
o N.B. shared-* partition contain more nodes than public-* (the sum of public and
private nodes), but the maximum wall time is 12h.

e Public partitions:
o public-cpu - for CPU jobs that need to run between 12h and 4 days (max. 4 days)
o public-gpu - for GPU jobs that need to run between 12h and 4 days (max. 4 days)
o public-bigmem - same as public-cpu, but when you need a crazy amount of RAM
(max. 4 days)
o N.B. public-* partition contain less nodes than shared-*, but the maximum wall time
is 4 days.

e Special public partitions:

o debug-cpu - to test your CPU jobs and make sure everything works fine (max. 15 min)
public-interactive-gpu - Run interactive jobs or to test your GPU jobs and make
sure everything works fine (max. 04h)
public-interactive-cpu - for interactive CPU jobs (max. of 6 cores for 8h)
public-longrun-cpu - for CPU jobs that don't need much resources, but need a longer
runtime time (max. of 2 cores for 14 days)
public-short-cpu for CPU jobs that need to run 1h max and 6 CPU max (limited to 1
job running per user but multiple submits allowed)

[¢]

[¢]

[¢]

[¢]

¢ Private partitions:
o The number of CPU/GPU nodes in a private partition depends on the partition
o If none of your colleagues are using the private partition, max. waiting time is 12h

eResearch Doc - https://doc.eresearch.unige.ch/

https://doc.eresearch.unige.ch/hpc/hpc_clusters#compute_nodes
https://doc.eresearch.unige.ch/hpc/hpc_clusters#compute_nodes

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

o For jobs that need to run for more than 4 days (max. 7 days)

You can read more about job priorities and waiting time in the Slurm Job priority section.

Partitions lists

The command sinfo shows you more details about the partitions you have access to (default time,
etc.)

[root@adminl ~]# sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug-cpu* up 15:00 2 idle cpu[001-002]
debug-gpu up 15:00 1 idle gpu0Ol
public-cpu up 4-00:00:00 77 alloc cpu[006-082]
public-bigmem up 4-00:00:00 4 idle cpu[112-115]
public-gpu up 2-00:00:00 6 idle gpu[002-006,008]
shared-cpu up 12:00:00 33 mix
cpu[005,084-111,116-119]

shared-cpu up 12:00:00 77 alloc cpu[006-082]

[...]

The default partition is debug- cpu (see, there is as '*' in its name). If you want to use
another one, you must explicitly specify it.

In the list of partitions (see below), the “Max mem per core” is the suggested value, but it is not
enforced. Please refer to the Memory and CPU usage section for details about how to request a
specific amount of memory. If you need more than 10GB RAM per core, you might want to use one of
the *-bigmem partition.

Clusters partitions

(!) As of 2020-11, the new partition naming is available on Baobab.

Partition Time Limit|Max mem per core
debug-cpu 15 Minutes |full node memory
public-interactive-gpu|4 hours full node memory
public-interactive-cpu|8 hours 10GB
public-longrun-cpu |14 Days 10GB

public-cpu 4 Days 10GB
public-gpu 4 Days 10GB
public-bigmem 4 Days half node memory
shared-cpu 12 Hours |10GB
shared-gpu 12 Hours |10GB

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

2025/08/03 05:23 5/25 Slurm and job management

Partition Time Limit|Max mem per core
shared-bigmem 12 Hours |500GB

All the compute nodes have 3GB of memory per core by default. Minimum resource is one core.

N.B.:no public-interactive-gpu, nor public-gpu partitions on Baobab, as there are only
private GPU nodes.

Private partitions

To avoid confusion, private partitions aren't detailed here.

Partition Time Limit|Max mem per core default Mem Per core
private-<privatename>|7 Days full node memory |3GB
Wall time

When you submit a job, you need to specify the estimated duration of your job.

The time formats accepted by Slurm are as follows:
minutes

minutes:seconds

hours:minutes:seconds

days-hours

days-hours:minutes
days-hours:minutes:seconds

Example:

1-12:30:25

Means: 1 day, 12 hour, 30 min and 25 seconds

the partition you use allows to run your code for this duration. Your job has more

@ Make sure you estimate the amount of time you correctly for your job and make sure
chance to start quickly if you ask less resources.

Memory

When you submit a job, the usable memory you have is 3GB per core. If you are running a job which
requires more or less memory per core, you can specify it like this:

- -mem-per-cpu=1000 # in MB

eResearch Doc - https://doc.eresearch.unige.ch/

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

Even if you have requested a full node, you still need to specify how much memory you need:
- -mem=60000 # 60'000 MB => 60 GB

This is even the case if you request a partition such as *-bigmem!

| The value of 0 will request all the node's memory. You can use - -mem=0 to ensure you
7 use the entire memory of a node.

GPU

Currently on Baobab and Yggdrasil there are several nodes equipped with GPUs. To request a GPU,
it's not enough to specify a partition with nodes having GPUs, you must as well specify how many
GPUs and optionally the needed GPU type.

To specify how many GPU to request, use the option - -gpus=n with n having a value between 1 and
the maximum according to the table below.

You should also specify the type of GPU you want:

ampere, high end architecture for multipurpose use

titan, for single precision computation, like machine learning

pascal, for double precision computation like physical simulations

rtx, to accelerate machine learning, data science workflows and ray tracing

Example to request three titan cards: - -gpus=titan:3.

You can find a detailed list of GPUs available on our clusters here :
https://doc.eresearch.unige.ch/hpc/hpc_clusters#for_advanced users

Resources :

¢ P100 specifiations

e Titan x (pascal) specifications

e RTX 2080 Ti (turing) specifications

* Generic Resource (GRES) Scheduling in SLURM

CPU

You can request all the CPUs of a compute node minus two

&% that are reserved for the OS. See slurm core spec

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

https://doc.eresearch.unige.ch/hpc/hpc_clusters#for_advanced_users
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/#specs
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/#specs
http://baobabmaster.unige.ch/slurmdoc/gres.html
https://slurm.schedmd.com/core_spec.html

2025/08/03 05:23 7/25 Slurm and job management

CPU types

It's normally not important on which type of node your job is running. But there are some cases where
it is important to be able to stick to a given kind of CPU or a certain generation of CPUs.

You can request for example to have only nodes with CPU E5-2660V0 :
srun --constraint=E5-2660V0

or

#SBATCH --constraint=E5-2660V0
Or you can specify that you want a node of generation V3 :

srun --constraint=V3

or

#SBATCH --constraint=V3

You can specify as well multiple constraints using logical or with the symbol |. For example if you
don't want to use nodes of generation V1:

srun --constraint="V2|V3|V4|V5|V6"
or
#SBATCH --constraint="V2|V3|V4|V5|V6"

If you want a list of those specifications, please check : For advanced users - Compute nodes

Single thread vs multi thread vs distributed jobs

There are three job categories each with different needs:

Job type Number of cpu used Examples Keywords Slurm
single threaded one CPU Python, plain R -

all the CPUs of a compute
node (best case scenario)

can spread tasks on
multiple compute nodes

multi threaded Matlab, Stata-MP |OpenMP, SMP --cpus-per-tasks

OpenMPI,

distributed
workers

Palabos OpenFOAM --ntasks

There are also hybrid jobs, where each tasks of such a job behave like a multi-threaded job. This is
not very common and we won't cover this case.

In slurm, you have two options for asking CPU resources:

e --cpus-per-tasks: this will specify that you want more than one CPU per task.

e - -ntasks: this will launch n time your job. ONLY specify a value bigger than one if your job
knows how to handle multitasking properly. For example OpenMPI job can benefit of this option.
If your job doesn't handle this option correctly, it will be launched n time doing strictly the same
things, this is not what you want and will wait resources and create corrupted output files.

eResearch Doc - https://doc.eresearch.unige.ch/

https://doc.eresearch.unige.ch/hpc/hpc_clusters#compute_nodes

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

Submitting jobs

After connecting to the login node, you need to submit a job to Slurm to request computing resources.
You can request it in 3 ways :

method|execute job |blocking command|support job array batch script needed
salloc |no yes no no

srun yes, single one|yes no no

sbatch |yes no yes yes (or -w option)

By blocking command, we mean that you need to keep your terminal open during the whole process.
If you close it, your job will finish.

An “sbatch” script is a Bash script with special instructions for Slurm.

Do not execute directly the sbatch script as bash script, but submit it using sbatch
(otherwise your script will be launched on the login node and this is forbidden):

[sagon@login2 slurm] $ sbatch example.sh
@ Submitted batch job 46721231

The number 40721231 is the jobid that is a unig number. You can use it later for
reporting, see logs or cancel for example.

Whatever method you use, you need to pass some arguments (such as how many CPU you need,
which Slurm partition to use, how long your script will run, how to execute your code). Slurm will then
add your job in a queue with other users' jobs, and find the fastest way to provide the resources you
asked for. When the resources are available, your job will start.

There are various possibilities to submit a job on the cluster. We have detailed the most common
usage below.

If you belong to more than one account, you should specify which account should be
3 used with the option - -account=<account>

Batch mode (sbatch)

To use the batch mode, you need a sbatch script. Here is an Example of an sbatch script
my sbatch.s with #SBATCH directives :

#!/bin/sh
#SBATCH --job-name jobname # this is a parameter to help you sort
your job when listing it

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

https://doc.eresearch.unige.ch/hpc/best_practices#rules_and_etiquette

2025/08/03 05:23 9/25 Slurm and job management

#SBATCH --error jobname-error.e%j # optional. By default a file slurm-
{jobid}.out will be created

#SBATCH --output jobname-out.o0%]j # optional. By default the error and
output files are merged

#SBATCH --ntasks 1 # number of tasks in your job. One by
default

#SBATCH --cpus-per-task 1 # number of cpus for each task. One by
default

#SBATCH --partition debug-cpu # the partition to use. By default
debug-cpu

#SBATCH --time 15:00 # maximum run time.

module load my software # load a specific software using

module, for example Python
srun my software # run your software
To submit your job proceed as follows:

[sagon@loginl ~]$ sbatch example.sh
Submitted batch job 53697

The job number can be useful if you want to see the status of the job on the queue of kill it for
example.

To have a list of all options, please check Slurm documentation - sbatch

You can submit a batch job either with the help of a script or directly by specifying the options on the
command line. The recommended way to use options for sbatch is to add them directly in the script
as in the previous example.

Here are some examples to illustrate the second possibilities.

A simple example to launch a batch job my sbatch.sh using 16 cpus on the default partition:
sbatch --ntasks=16 my sbatch.sh

If not specified, the default partition is debug-cpu and the the default number of cpus
b per task is 1

Launch a job specifying the partition “shared-cpu” (see Partitions and limits section) and max
execution time:

sbatch --ntasks=8 --partition=shared-cpu --time=0-00:05:00 my sbatch.sh

You will have more chance to have your job quickly scheduled if you specify an
accurate max execution time (i.e. not the permitted maximum).

eResearch Doc - https://doc.eresearch.unige.ch/

https://slurm.schedmd.com/sbatch.html

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

Monothreaded jobs

Click here for job type comparison.

When you submit a job on the clusters, the minimum resources that are allocated to you is a one cpu.
As the node may be shared with other users, it is wise to specify the amount of memory you need per
core. If you don't, the default memory allocated is 3GB per core.

Let's say you want to launch one job that needs 1GB per core. Your sbatch script is named
example.sh

#!/bin/bash
#SBATCH --partition=public-cpu
#SBATCH --time=05:00

#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=1000 # in MB

srun ./yourprog
To submit your job do as follows:

[sagon@loginl ~]$ sbatch example.sh
Submitted batch job 53697

The number you get is the jobid.

Adapt this example to fit your needs. If you need to scale this solution to a bigger number of similar
tasks, see the Job array section.

Multithreaded jobs

Click here for job type comparison.

When you have a program that needs more than one core per task (openMP, STATA etc), you can
adapt the Monothreaded jobs example by adding one line:

#SBATCH --cpus-per-task=x

where x is between 1 and 128. We have only a couple of AMD nodes with 128 cores. If you request a
high number of cpus per task, be sure that you need it as you may have to wait many days for them
to be available.

If you want to use all the cores of a node, but you don't know in advance the characteristic of the
node, you can use this sbatch script:

#!/bin/sh
#SBATCH --job-name=test

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

https://doc.eresearch.unige.ch/hpc/best_practices#single_thread_vs_multi_thread_vs_distributed_jobs
https://doc.eresearch.unige.ch/hpc/best_practices#single_thread_vs_multi_thread_vs_distributed_jobs

2025/08/03 05:23 11/25 Slurm and job management

#SBATCH --time=00:15:00
#SBATCH --partition=public-cpu
#SBATCH --output=slurm-%J.out
#SBATCH --exclusive

#SBATCH --ntasks=1

We want to have a node with minimum

2 sockets, 4 cores per socket and 1 thread per core

nb cores =2 * 4 * 1 =8 cores

1f you want more cores, you can increase the number of cores per socket to
6 or 8 to have 12 or 16 cores.

#SBATCH --extra-node-info=2:4:1

We want to have at least 12GB RAM on this node
#SBATCH --mem=12000

run one task which use all the cpus of the node
srun --cpu_bind=mask cpu:0xffffffff . /mySoft

Distributed jobs

When you want to distribute your jobs across nodes, your software will probably use an MPI
implementation such as OpenMPI or Intel.

To specify the number of MPI workers, you need to specify the number of tasks in slurm.

--ntasks-per-node: maximum number of tasks per node. Can be used in conjunction with - -
ntasks.

-n, --ntasks=<number>: number of workers in total
-N, --nodes=<minnodes[-maxnodes]>: number of nodes allocated to this job
You can have as well a hybrid job requiring tasks and cpus (for OpenMPI + OpenMP for example).

If you request for example 20 tasks and 1 CPU per task, your job may be executed by one compute
node having 20 cpus if available or may be spread across any number of compute nodes. The issue
may be that the compute nodes are shared with other jobs and not from the same generation.

To circumvent this, you can specify the cpu type you want, but you'll have more wait time. You may
as well want to specify the - -exclusive flag to be sure that your compute node won't be shared
with other jobs. In this case, please do not specify the number of compute node or you may waste
resources.

You may as well be interested by the distribution parameter.
--distribution: Specify alternate distribution methods for remote processes.
If you need more details, please consult the sbatch man page.

If you want to compile your software against MPI, it is very important not to compile using directly

eResearch Doc - https://doc.eresearch.unige.ch/

https://www.open-mpi.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html#gs.z7sipo
https://slurm.schedmd.com/sbatch.html

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

gcc, icc or similar commands, but rather rely on the wrappers mpicc, mpic++, mpicxx or similar
ones provided by module.

Remember that you need to load the same module at runtime as well.

See here for more information about the toolchains

GPGPU jobs

When we talk about GPGPU we mean using a GPU to perform calculation, not for visualization.

You can see on this table How our clusters work all the GPUs models we have on the cluster. You may
notice that we have a very wide range of GPU models, from low end to high end. It is important to
select the correct GPU model to avoid to waste resources. The important characteristics of a GPU are:

e on board memory in GB
e simple precision vs double precision for float calculation
e compute capability

Specify the memory needed. For example, request one GPU that has 10G at least.
srun --gres=gpu:l,VramPerGpu:10G

If you just need a GPU and you don't care of the type, don't specify it. You'll get the lower model
available.

#SBATCH --gpus=1
Example to request two double precision GPU model:

#!/bin/sh

#SBATCH --partition=shared-gpu

#SBATCH --gpus=2

#SBATCH --constraint=DOUBLE PRECISION GPU

srun nvidia-smi

It's not possible to put two types in the GRES request, but you can ask for specific compute capability,
for example you want to request any GPU model with compute capability bigger or equal to 7.5:

Example

#!/bin/sh

#SBATCH --partition=shared-gpu

#SBATCH --gpus=1

#SBATCH - -
constraint="COMPUTE CAPABILITY 7 5|COMPUTE CAPABILITY 8 0|COMPUTE CAPABILITY
_8.6]"

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

https://doc.eresearch.unige.ch/hpc/applications_and_libraries#module_-_lmod
https://doc.eresearch.unige.ch/hpc/applications_and_libraries#choosing_the_compiler_toolchain
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://doc.eresearch.unige.ch/hpc/hpc_clusters#gpus_models_on_the_clusters

2025/08/03 05:23 13/25 Slurm and job management

Example of script (see also https://gitlab.unige.ch/hpc/softs/tree/master/c/cuda):
#!/bin/env bash

#SBATCH --partition=shared-gpu

#SBATCH --time=01:00:00

#SBATCH --gpus=titan:1

module load CUDA

see here for more samples:
/opt/cudasample/NVIDIA CUDA-8.0 Samples/bin/x86 64/linux/release/

1if you need to know the allocated CUDA device, you can obtain it here:
echo $CUDA VISIBLE DEVICES

srun deviceQuery

If you want to see what GPUs are in use in a given node:
scontrol -d show node gpu002

[...]

Gres=gpu:titan:3
GresUsed=mic:0,gpu:titan:3(IDX:0-2)

[...]

In this case, this means that node gpu002 has three Titan cards, and all of them are allocated.

Interactive jobs

If you need to perform some debug/tests or if your software requires a graphical interface, you can
start an interactive session on a compute node. For example, let's say you want to start a session on
the debug- cpu partition for a duration of 15 minutes, using 2 CPUs:

[sagon@login2 ~]$ salloc -nl -c2 --partition=debug-cpu --time=15:00 --x11

When the resources are allocated to you, you can see the login prompt change to reflect that you are
using a compute node and not the login node:

[sagon@nodexxx ~]$
When done, you can stop the session like this:

[sagon@nodexxx ~]$ exit

\ l) Adding the option - -x11 will allow you to submit graphical job

eResearch Doc - https://doc.eresearch.unige.ch/

https://gitlab.unige.ch/hpc/softs/tree/master/c/cuda

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

For interactive programs, you might want to use the public-interactive-cpu
3 partition (Which partition for my job)

Job array

Slurm supports natively the notion of job arrays. A job array is useful when you have a lot of the same
jobs to launch and you just want to give a different parameter to every job.

Here is an example for launching n time a monothreaded job.

The following sbatch script my _job_array.sh is used and the variable ${SLURM ARRAY TASK ID}
shows the taks ID in the job array:

#!1/bin/bash

#SBATCH --partition=shared-cpu
#SBATCH --time=00:10:00

#SBATCH --cpus-per-task=1

#SBATCH --ntasks=1

#SBATCH --mem-per-cpu=1000 # in MB
#SBATCH -0 myjob-%A %a.out

srun echo "I'm task id " ${SLURM ARRAY TASK ID} " on node " $(hostname

When you want to execute a job array, use the - -array option. You may specify how many cores
ONE instance of your array needs with - -ntasks if you are using MPI or with - -cpus-per-task
otherwise. You must specify the array size and offset by specifying the start and stop of the array
index.

N.B. The maximum size of an array is currently set to 10 000.

We encourgae you to limit the maximum number of simultaneously running tasks from the job array
may be specified using a “%" separator.

For example “- -array=0-15%4" will limit the number of simultaneously running tasks from this job
array to 4

Example to launch an array of 100 jobs, each one using one core:
sbatch --array=1-100%4 my job array.sh

The max number %100 sems to be a good limit :)

Advanced usage

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

2025/08/03 05:23 15/25 Slurm and job management

Job dependency

Slurm can handle job dependencies in various way.
Some of the dependency features available in Slurm (cf. man sbatch)

e after:job id[[+time][:jobid[+time]...]]
e afterany:job id[:jobid...]

e afternotok:job id[:jobid...]

e afterok:job id[:jobid...]

e expand:job id

e singleton

Example to submit multiple batch jobs that are dependent from each other. The dependent job will
only start when the previous one terminated with success:

[sagon@login2 ~]$ sbatch pre process.bash

Submitted batch job nnnnn

[sagon@login2 ~]$ sbatch --dependency=afterok:nnnnn do work.bash
Submitted batch job 12346

N.B. in this example, the first submitted job is given the job ID “nnnnn” (in real life, it will be a
number), and the second one depends on it thanks to the option - -dependency=afterok:nnnnn.
You obviously need to replace nnnnn with the job ID returned by Slurm.

You can see here an example with singleton used to restart a job when time limit is reached.
Master/Slave

You can run different job step in an allocation. This may be useful in case of a master/slave program
for example.

For example, if you want to launch a master program on core 0 and 4 slaves jobs on cores 1-4:
[sagon@login2 ~]$ cat master.conf

#TaskID Program Arguments

0 masterprogramm

1-4 slaveprogramm - -rank=%0

[sagon@login2 ~]$ srun --ntasks=5 --multi-prog master.conf

Use %t and %0 to obtain respectively the task id and offset.

Checkpoint

A checkpoint allows you to pause/stop a program and to restart it from the “saved” point. This is
usually done by saving your progress to a file, and your program can be restarted from that file.

eResearch Doc - https://doc.eresearch.unige.ch/

https://hpc-community.unige.ch/t/tutorial-how-to-automatically-restart-a-slurm-job-after-time-limit/517

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

Not all programs implement checkpointing, so you have to check if this is an option for you.

If you can use checkpoints, this can be interesting :

¢ to save your progress and avoid starting all over again if your job fails.
e to run a time-consuming task in multiple short jobs to obtain resources faster
o instead of requesting a job for 4 days, you could execute it by running multiple 12h jobs
consecutively. This could decrease your waiting time to obtain the resources (as it's
usually faster to get a slot of 12h than it is for 4 days).

Please check this post :

e [tutorial] How to automatically restart a slurm job after time limit

Reservation

to request for reservation; contact the HPC team following the instruction
https://doc.eresearch.unige.ch/hpc/start > contact the hpc team by email

list reservation:

(baobab) - [alberta@login2 ~]#scontrol show res

Use reservation via srun:

(baobab) - [alberta@login2 ~]# srun --reservation <reservation name> hostname
Use reservation via script sbatch:

#SBATCH --reservation <reservation name>

#!/bin/bash

#SBATCH --job-name=test unitaire

#SBATCH --reservation test
srun hostname

Job monitoring

If you want to get an estimated start time for your job, you can use - -test-only:
srun --test-only -nl@0 -p public-cpu -t 10 hostname
To see the queue :

squeue

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

https://hpc-community.unige.ch/t/tutorial-how-to-automatically-restart-a-slurm-job-after-time-limit/517
https://doc.eresearch.unige.ch/hpc/start

2025/08/03 05:23 17/25 Slurm and job management

Add the -u <username> to see a list of all your job together with the node they are scheduled on
and the reason why they might not be starting.
Add the -start flag to obtain the scheduled time of when your job should start. "

squeue -u $USER --start
To get an estimation of when your job is scheduled to start :

scontrol show jobid 5543

(_ Those commands give an estimation. Sometimes the waiting time will be longer,
3 sometimes it will be shorter

Email notification of job events

When a determined event occurs in your job's life, it is possible to receive an email to the address
used during your Account registration :

--mail-type=<type> BEGIN, END, FAIL, REQUEUE, and ALL (any state change).

Those options can be used with sbatch and srun.

If your job get killed, one of the reason could be that you have used too much memory. To check if it's
the case, you can have a look at dmesg.

For instance :

dmesg
Memory cgroup out of memory: Kill process 62310 (cavity3d) score 69 or
sacrifice child

The email you receive contains important information about why your job failed for instance, but it's
not always easy to read it. For example in this excerpt, you need to look inside the big block at th
beginning to find the Reason PartitionTimeLimit (meaning the requested time is too long for the
requested partition) :

[...]

$ scontrol show Job=123456

JobId=123456 JobName=/home/users/b/brero/testFailed.sh
[...]
JobState=PENDING Reason=PartitionTimelLimit Dependency=(null)
Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
RunTime=00:00:00 TimeLimit=5-13:20:00 TimeMin=N/A
[...]

eResearch Doc - https://doc.eresearch.unige.ch/

https://doc.eresearch.unige.ch/hpc/access_the_hpc_clusters#account

Last update: 2025/07/25 06:36

hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

Memory and CPU usage

You can see how much memory/cpu your job is using if it is still running using sstat. :

sstat --format=AveCPU,MaxRSS,JobID,NodeList -j <yourjobid>

If your job is no longer running, you can use sacct to see stats about. :

sacct --format=Start,AveCPU,State,MaxRSS,JobID,NodeList,RegMem --units=G -j

<yourjobid>

If you want other information please see the sacct manpage.

by default the command displays a lot of fields. You can use this trick to display them
correctly. Then you can move with left and right arrows to see the remaining fields

(yggdrasil) - [root@adminl ~]$ sstat -j 39919765 --all | less -#2

MaxVMSizeTask
AveRSS MaxPages
MinCPU MinCPUNode

-N -S
1 JobID MaxVMSize MaxVMSizeNode
AveVMSize MaxRSS MaxRSSNode MaxRSSTask
MaxPagesNode MaxPagesTask AvePages
MinCPUTask AveCPU NTasks AveCPUFreq ReqCPUF>
2

3 39919765.ex+
5584K 1728K
cpu0©95
0 00:00:00

4 39919765.ba+
1298188K 599588K
cpu095

0 00:39:25

Energy usage

CPUs

489808K
cpu0@95
0 0

1 2.80M

1298188K
Ccpu095
0 2511
1 984K

cpu095 0
0 1728K 0
00:00:00 cpu095

>

cpu095 0

0 599588K 2511
00:39:25 cpu095

>

You can see the energy consumption of your jobs on Yggdrasil (Baobab soon). The energy is shown in

Joules using sacct.

(yggdrasil) - [root@adminl state]

(master *)$ sacct

format=Start,State,JobID,ConsumedEnergy,ConsumedEnergyRaw --units=k -j

https://doc.eresearch.unige.ch/

Printed on 2025/08/03 05:23

2025/08/03 05:23 19/25

Slurm and job management

28478878

2023-10-12T709:48:28
2023-10-12T09:48:28
2023-10-12T709:48:28

o

GPUs

State JobID
COMPLETED 28478878
COMPLETED 28478878.ex+
COMPLETED 28478878.0

ConsumedEnergy ConsumedEnergyRaw

It is working only for Intel nodes (at least for the moment). Only in the case of an
exclusive job allocation does this value reflect the job's real energy consumption.

If you are interested by the power usage of a GPU card your job is using, you can issue the following
command while your job is running on a GPU node:

(baobab) - [root@gpu002 ~]$ nvidia-smi dmon --select p --id 0O

gpu pwr gtemp mtemp

Idx W C C
0 63 55 -
0 59 55 -
0 62 55 -

Other tools

spart

spart ? is a tool to check the overall partition usage/description.

More info in this post.

[brero@login2 ~]$ spart
QUEUE STA
MAXIMUM CORES NODE

PARTITION TUS CORES CORES

DEFAULT

JOB-TIME JOB-TIME /NODE MEM-GB
debug-EL7 * 32 64
15 mins 15 mins 16 64
mono-EL7 120 784
1 mins 4 days 16 64
parallel-EL7 120 784
1 mins 4 days 16 64
shared-EL7 326 3572
1 mins 12 hour 12 40
mono-shared-EL7 326 3572

FREE TOTAL RESORC

PENDNG

50114

4197

2108

734

144348

OTHER

PENDNG

43

18

489

615

FREE

NODES

TOTAL

NODES

49

49

224

224

|| MAX

|| NODES

eResearch Doc - https://doc.eresearch.unige.ch/

https://hpc-community.unige.ch/t/howto-check-overall-partition-usage/866

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

1 mins 12 hour 12 40
bigmem-EL7 14 16 66 0 0 1] 1

1 mins 4 days 16 256
shared-bigmem-EL7 63 212 820 0 1 10 || -

1 mins 12 hour 8 256
shared-gpu-EL7 415 484 16 36 3 12 || -

1 mins 12 hour 12 128
admin-EL7 16 16 0 0 1 1] -

1 mins 7 days 16 64

YOUR YOUR YOUR YOUR
RUN PEND OTHR TOTL
COMMON VALUES: 0 0 0 0

pestat

pestat * is another tool to check cluster usage, this time focusing on single nodes

More info in this post.

[brero@login2 ~1$ pestat

Hostname Partition Node Num CPU CPUload Memsize Freemem
Joblist
State Use/Tot (MB) (MB) JobId
User ...
gpuB02 shared-gpu-EL7+ mix 6 12 8.29%* 257820 231499

39803837 krivachy 39806932 salamda@ 39795512 blonde® 39795511 blonde0
39795510 blonde® 39795480 blonde0

gpu004 shared-gpu-EL7 mix 6 20 7.27*% 128820 102173
39795515 blonde® 39795516 blonde® 39795485 blonde® 39795481 blonde® 39795482
blonde® 39795499 blonde0

gpu005 shared-gpu-EL7 mix 5 20 6.05* 128820 97620
39795513 blonde® 39795463 blonde® 39795464 blondeO

[...]

node001 debug-EL7* idle 0 16 8.64* 64000 47239

node002 debug-EL7* alloc 16 16 7.63* 64000 16393
39772071 gonzalcr

node003 debug-EL7* alloc 16 16 11.16%* 64000 18610
39772072 gonzalcr

node004 debug-EL7* drain* 0 16 0.01 64000 62061

node005 mono-EL7 drng* 8 16 2.52%* 64000 38015
39802885 vie

node@07 parallel-EL7 alloc 16 16 16.03 64000 53761
39524658 robinsh8

node008 mono-EL7 mix 8 16 2.13%* 64000 53388

39802883 vie

node009 parallel-EL7 alloc 16 16 0.01%* 64000 54509
39524658 robinsh8

node010 parallel-EL7 alloc 16 16 0.01* 64000 49796
39524658 robinsh8

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

https://hpc-community.unige.ch/t/howto-check-overall-partition-usage/866

2025/08/03 05:23 21/25 Slurm and job management

node011 mono-EL7 mix 8 16 1.53* 64000 48417
39802889 vie

seff

seff is tool get a Slurm job efficiency report

[sagon@login2 ~] $ seff 30455298
Job ID: 30455298

Cluster: baobab

User/Group: savchenk/hpc users
State: COMPLETED (exit code 0)
Cores: 1

CPU Utilized: 00:00:01

CPU Efficiency: 0.77% of 00:02:10 core-walltime
Job Wall-clock time: 00:02:10
Memory Utilized: 34.16 MB

Memory Efficiency: 1.14% of 2.93 GB

HDF5 profiling plugin

The HDF5 plugin can help profile your jobs *.
Official documentation :
e https://slurm.schedmd.com/hdf5_profile_user_guide.html#Profiling
The HDFS5 files will be saved as /opt/cluster/slurm/hdf5/${USERNAME}/${JOBID}.h5

You can analyse the HDF5 files directly on the login node via HDFView *.

Cancel jobs

If you realise you made a mistake in your code or in your sbatch script, you can cancel your pending
jobs or your running job (only yours).

If you want to cancel a particular job, you need to know its job id (you can see it on the web interface
or using squeue).

Cancelling a job using its job id:
scancel <jobid>
Cancel a job and send a custom signal (for example to force the binary to generate a checkpoint):

scancel --signal=signal name

eResearch Doc - https://doc.eresearch.unige.ch/

https://slurm.schedmd.com/hdf5_profile_user_guide.html#Profiling

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

You can read this topic Gracefully quit when job is cancelled

Cancel all the jobs belonging to one user that are in a pending state:

scancel --user=meyerx --state=pending
Job priorities

How is the priority of a job determined ?

HPC users often wonder how is the job priority calculated by Slurm.

On our clusters, the priority is obtained in general by four criteria, and each criterion has a different
weight.

partition : 15000
age: 300

jobsize: 1000
fairshare: 30000

e The partition criterion is always the same for a given user on a given partition. It is higher if
you use a private partition.

o For example, if you submit a job to the partition shared-cpu you'll get a priority of 3750
for the partition criterion.

o However, this partition criterion may have a multiplier, ie : if you use a private
partitions.

o For example, if a user submit a job on a private partition, the multiplication factor is 4 and
he will have a priority of 15000 for the partition criterion.

o The reason for this is because private nodes are simultaneously part of multiple partitions
: a private partition and shared- cpu partition. The multiplier ensures that the people
with access to private partitions have a faster access to their private node.

e The age criterion starts to increase as soon as the job is submitted. Hence, the priority will
slowly increase with time. This is used to prevent a job with a low priority to stay in the queue
for ages.

e The jobsize criterion is here to favour big jobs, but the weigh is very low unless you submit a
very big job.

e The fairshare criterion is based on the past usage of the user. If you use the cluster a lot,
your fairshare criterion will decrease. Every 2 weeks, half of your past usage is “forgotten”
by Slurm.

You can see how the priority of a job and see how it is calculated with the sprio command. Example
e for a public partition (partition weight 3750)

[root@master ~]# sprio -j xxx

JOBID PARTITION PRIORITY SITE AGE FAIRSHARE
JOBSIZE PARTITION QO0S
XXX mono-shar 3810 0 6 53

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

https://hpc-community.unige.ch/t/gracefully-quit-when-job-is-cancelled/1092/2

2025/08/03 05:23 23/25 Slurm and job management

2 3750 0

» for a private partition (partition weight 15000)

[root@master ~]# sprio -j XXX

JOBID PARTITION PRIORITY SITE AGE FAIRSHARE
JOBSIZE PARTITION Q0S
yyy wesolowsk 19590 0 1 4586
4 15000 0
222 dpnc-EL7 21288 0 0 6297
2 15000 0

The priority is calculated by summing the values of all four criteria (it's actually a little more complex
than that, as the priority returned by sprio isn't an exact sum, but you get the general idea). The
bigger the priority, the higher is your chance to be scheduled compared to a job with a lower priority.
The partition and fairshare criteria have then the strongest impact on the total priority
calculation.

If you want to learn more about it, you can check this presentation :

e Slurm Priority, Fairshare and Fair Tree (might differ from how we do things on UNIGE clusters)
Priority vs. waiting time

Please also remember that the priority of a job is one thing, but the actual waiting time is another.

e Your priority is calculated regardless of the amount of resources you request for a job.

e If you request a large amount of resources, it might take more time for Slurm to provide those
resources (the time to wait until they are free).

e Hence, asking for more or less memory won't change the priority, but asking for more resources
might affect the waiting time.

e So it is better to request as little resources as possible if you want increase your chances to be
scheduled quickly.

The waiting time is a pessimistic estimation and is based on the maximum time a job is announced to
take. If you don't use the #SBATCH —time directive in your sbatch script, the default time for a job is
given by the maximum time limit of the partition (12h, 4 day or 7 days depending on the partition).
This implies that a job with a maximum run time of 4 days will be scheduled to take the whole 4 days
and other jobs will be scheduled to run after it has finish. However if the job only take 10 hours the
other jobs can start sooner.

However, if you are using a shared-* partition, bear in mind that a new job on a private partition
might “cut in line” as they have a higher priority.

If you are requesting for example 12h00 of wall-time and 16 cores, and another user is asking for a
wall-time of 1 minute and 1 core, this job will most likely be scheduled before your job thanks to the
backfill mechanism even if you job has a higher priority.

The total number of running jobs of a given user doesn’t change the priority of a job. But if the user
uses the cluster a lot (especially a lot in a short time), then his/her fairshare criterion will decrease.

eResearch Doc - https://doc.eresearch.unige.ch/

https://slurm.schedmd.com/SLUG19/Priority_and_Fair_Trees.pdf

Last update: 2025/07/25 06:36 hpc:slurm https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

Please also check this post : HPC Community - Job priority explanation

Backfill mechanism

The priority is determined by various factors like the usage history, job age and its size.

The scheduler use a backfill to maximize the cluster usage.

Tirre

Backfill
Scheduler

To benefit of the backfill allocation, you can specify a minimum and a maximum execution time when
you submit a job. If the resources for the max execution time are not available, the scheduler will try
to decrease the execution time until it reaches the minimum execution time. In the following
example, we submit a job specifying that we want ideally a two days execution time with a one day
minimum:

srun --tasks=128 --time-min=1-00:00:00 --time=2-00:00:00 --partition shared-
cpu myjob

Attention

Warning : Be sure that you have some kind of checkpointing activated as your job will be terminated
between the min and max execution time.

1)

https://hpc-community.unige.ch/t/question-about-mono-el7-and-shared-el7-partitions-usage/1006/2

2)

https://github.com/mercanca/spart

3)

https://github.com/OleHolmNielsen/Slurm_tools

https://doc.eresearch.unige.ch/ Printed on 2025/08/03 05:23

https://hpc-community.unige.ch/t/job-priority-explanation/721
https://hpc-community.unige.ch/t/question-about-mono-el7-and-shared-el7-partitions-usage/1006/2
https://github.com/mercanca/spart
https://github.com/OleHolmNielsen/Slurm_tools

2025/08/03 05:23 25/25 Slurm and job management

4)
https://hpc-community.unige.ch/t/slurm-monitor-resources-during-job/505/3

5)
https://hpc-community.unige.ch/t/new-software-installed-hdfview-2-14-system-java-centos7/1020
6)

https://hpc-community.unige.ch/t/estimated-wait-time/1088

From:
https://doc.eresearch.unige.ch/ - eResearch Doc

Permanent link:
https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

Last update: 2025/07/25 06:36

eResearch Doc - https://doc.eresearch.unige.ch/

https://hpc-community.unige.ch/t/slurm-monitor-resources-during-job/505/3
https://hpc-community.unige.ch/t/new-software-installed-hdfview-2-14-system-java-centos7/1020
https://hpc-community.unige.ch/t/estimated-wait-time/1088
https://doc.eresearch.unige.ch/
https://doc.eresearch.unige.ch/hpc/slurm?rev=1753425411

	Slurm and job management
	What is Slurm ?
	Resources
	Partitions
	What is a partition ?
	Which partition for my job ?
	Partitions lists
	Clusters partitions
	Private partitions

	Wall time
	Memory
	GPU
	CPU
	CPU types
	Single thread vs multi thread vs distributed jobs

	Submitting jobs
	Batch mode (sbatch)
	Monothreaded jobs
	Multithreaded jobs
	Distributed jobs
	GPGPU jobs
	Interactive jobs
	Job array
	Advanced usage
	Job dependency
	Master/Slave

	Checkpoint

	Reservation
	Job monitoring
	Email notification of job events
	Memory and CPU usage
	Energy usage
	CPUs
	GPUs

	Other tools
	spart
	pestat
	seff
	HDF5 profiling plugin

	Cancel jobs
	Job priorities
	How is the priority of a job determined ?
	Priority vs. waiting time
	Backfill mechanism

